7–10. Два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней. Решаем уравнения, находим корни уравнения и сравниваем ответы.
7. 1)
число в корне не может равняться отрицательному числу, корней уравнения нет.
2)
число в модуле не может равняться отрицательному числу, корней уравнения нет.
=> уравнения равносильные.
8. 1)
корней уравнения нет.
2)
корней уравнения нет.
=> уравнения равносильные.
9. 1)
ОДЗ: ,
;
(не удовлетворяет ОДЗ),
ответ:
2)
,
ответ: ;
=> уравнения не равносильные.
10. 1)
ОДЗ: ,
;
ответ:
2)
ответ:
=> уравнения равносильные.
12–16. Необходимо найти сумму корней уравнения. Решаем уравнение, находим корни уравнения, складываем их. Если уравнение имеет один корень, то суммой (ответом) будет значение корня уравнения.
12.
ОДЗ: ,
;
,
(не удовлетворяет ОДЗ)
ответ:
13.
ОДЗ: ;
ответ:
14.
ОДЗ: ,
;
ответ:
15.
ОДЗ: ,
,
,
;
ответ:
16.
ОДЗ: ;
ответ:
Нули:
x = -8
x = 1
Знаки:
-8 1
- + -
ответ: x ∈ (-∞; -8) ∪ (1; +∞)