Две величины называются обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз. Соответственно, при уменьшении одной из них в несколько раз другая увеличивается во столько же раз. Примеры обратной пропорциональной зависимости: время, затраченное на прохождение определенного пути, и скорость, с которой этот путь был пройден — обратно пропорциональные величины. Две величины называются прямо пропорциональными, если при увеличении одной из них в несколько раз другая увеличивается во столько же раз. Соответственно, при уменьшении одной из них в несколько раз, другая уменьшается во столько же раз. Примеры прямой пропорциональной зависимости: при постоянной скорости пройденный путь прямо пропорционально зависит от времени. Периметр квадрата и его сторона — прямо пропорциональные величины.
Радиус вписанной в треугольник окружности: r=(p-a)(p-a)(p-b)/p)^1/2 <--формула Герона, где S - площадь треугольника, а p=(2a+b)/2 - полупериметр треугольника. S=1/2* основание*высота найдем основание: a-равные стороны b-основание c-высота высота делит основание равнобедренного треугольника на половину, образуя прямой угол с ним.
Примеры обратной пропорциональной зависимости: время, затраченное на прохождение определенного пути, и скорость, с которой этот путь был пройден — обратно пропорциональные величины.
Две величины называются прямо пропорциональными, если при увеличении одной из них в несколько раз другая увеличивается во столько же раз. Соответственно, при уменьшении одной из них в несколько раз, другая уменьшается во столько же раз.
Примеры прямой пропорциональной зависимости: при постоянной скорости пройденный путь прямо пропорционально зависит от времени. Периметр квадрата и его сторона — прямо пропорциональные величины.