X^2=10y+6 подстааим это значение во второе ур-е: 10у+6+3=10y+y^2 перенесем все члены: у^2-9=0 у^2=√9 у=3 подставим значение у в первое выражение: х^2=10*3 + 6 х^2=36 х=√36 х=6 ответ(6;3)
Самое маленькое трехзначное число - это 100. Если полагать, что меньшее из искомых чисел равно 100, то большее = 100*5 = 500 а сумма 500 + 100 = 600. По условию сумма 498, но это меньше, чем 600, чего не может быть. Значит среди трехзначных чисел задача не имеет решений. Пусть х - одно из чисел, тогда 498 - х - второе число, рассотрим два случая: 1. Если х - большее из чисел и тогда имеем уравнение х/(498 - х) = 5; 2. Если х - меньшее число, тогда (498 - х) /х = 5. Решая первое уравнение, получаем х = 2490 - 5х 6х = 2490 х = 415 498 - х = 83. Из второго уравнения находим 498 - х = 5х 6х = 498 х = 83 498 - х = 415. Оба случая привели к одному ответу. ответ: 83 и 415.
1) на отрезке [0;3] функция y=x³-4 возрастает, поэтому наименьшее значение она принимает при x=0, и оно равно 0-4=-4, а наибольшее - при x=3, и оно равно 3³-4=23.
2) перепишем функцию в виде y=-3x-1. Эта функция убывает на всей числовой оси, поэтому Ymax=y(-2)=5 и Ymin=y(0)=-1.
3) Функция убывает на промежутке [π/3;π/2) и возрастает на промежутке (π/2;5*π/6]. При этом y(π/3)=1-√3<y(5*π/6)=0, поэтому Ymax=y(5*π/6)=0, а Ymin=y(π/2)=-1
4) На промежутке [0;π/2] функция y=1+sin(x), а вместе с ней и функция y1=√(1+sin(x)) возрастают. Поэтому Ymin=y1(0)=1, а Ymax=y1(π/2)=√(1+1)=√2
10у+6+3=10y+y^2 перенесем все члены:
у^2-9=0
у^2=√9
у=3
подставим значение у в первое выражение:
х^2=10*3 + 6
х^2=36
х=√36
х=6
ответ(6;3)