Максимум в точке х = (для записи
)
Минимум в точке х = -1
Объяснение:
f(x)=2x^3+7x^2+8x+4
Область определения:
Х∈R
f(x)=2x^3+7x^2+8x+4, Х∈R
Определим производную f:
f(x) = 2x^3+7x^2+8x+4
f'(x) = d/dx (2x^3+7x^2+8x+4)
f'(x) = d/dx(2x^3) + d/dx(7x^2) + d/dx(8x) + d/dx(4)
f'(x) = 2*3x^2 + 7*2x+8+0
f'(x) = 6x^2+14x+8
f'(x) = 6x^2+14x+8, Х∈R
Представим f'(x) = 0
0=6x^2+14x+8
Решим ур-е относительно Х
6x^2+14x+8=0 | :2
3x^2+7x+4=0
D=b2-4ac = 7^2-4*3*4 = 1
x1,2= -b+-D/2a = -7+-1/2*3
x1= - 4/3
х2= -1
X∈(-∞;- 4/3)
X∈(- 4/3;-1)
max: - 4/3
min: -1
Найдём уравнение плоскости АВС. Точки A(1;2;3), B(2;-1;1), C(-1;-2;0).
Вектор АВ = (1; -3; -2), вектор АС = (-2; -4; -3).
(x - 1) (y - 2) (z - 3) | (x - 1) (y - 2)
1 -3 -2 | 1 -2
-2 -4 -3 | -2 -4 = (x - 1)*9 + (y - 2)*4 + (z - 3)*(-4) - (y - 2)*(-3) - (x - 1)*8 - (z - 3)*6 = 9x - 9 + 4y - 8 - 4z + 12 + 3y - 6 - 8x + 8 - 6z +18 = x + 7y - 10z + 15 = 0.
Плоскость АВС пересекает ось Ох при значении координат y = 0, z = 0.
Отсюда координата точки на оси Ох: (-15; 0; 0).