Пусть в первой емкости было х л молока, тогда во второй (х-5)л. Когда из первой емкости отлили во вторую 11 литров, то в ней осталось( х-11) л молока, а во второй стало (х-5+11) л. молока. Известно, что в таком случае, во второй емкости в 2 раза больше молока, чем в первой.
Имеем уравнение:
2*(х-11)=х-5+11
2х-22=х+6
2х-х=6+22
х=28
Значит первоначально в первой емкости было 28 л молока, во второй х-5=28-5=23 л. После того , как перелили 11 литров из первой емкости во вторую стало : в первой емкости :28-11=17 л. молока, во второй 23+11=44 л. молока
ответ : в первой емкости стало 17 литров молока, а во второй - 44 литра
Объяснение:
Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами. А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.
В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.
ОДЗ: 7-x>0
x<7
log₂(7-x)=log₂32
7-x=32
x=7-32
x=-25 (входит в ОДЗ)
ответ: -25