Первое выполнение функции
a (x) = 2, b (y) = -4
p (a1) = (x + y) / 2 = (2 + (-4)) / 2 = -2 / 2 = -1
q (b1) = (x - y) / 2 = (2 - (-4)) / 2 = 6 / 2 = 3
Вывод
a = 2, b = -4, a1 = -1, b1 = 3
Второе выполнение функции
(изменили возвращаемые переменные)
a (x) = 2, b (y) = -4
p (b1) = (x + y) / 2 = (2 + (-4)) / 2 = -2 / 2 = -1
q (a1) = (x - y) / 2 = (2 - (-4)) / 2 = 6 / 2 = 3
Вывод
a = 2, b = -4, a1 = 3, b1 = -1
Третье выполнение функции
(изменили входные данные)
a (x) = -4, b (y) = 2
p (a1) = (x + y) / 2 = (-4 + 2) / 2 = -2 / 2 = -1
q (b1) = (x - y) / 2 = (-4 - 2) / 2 = -6 / 2 = -3
Вывод
a = 2, b = -4, a1 = -1, b1 = -3
Відповідь:
(Понятия «больше» и «меньше» наряду с понятием равенства возникли в связи со счетом предметов и необходимостью сравнивать различные величины. Понятиями неравенства пользовались уже древние греки. Архимед (III в. до н. э.), занимаясь вычислением длины окружности, установил, что «периметр всякого круга равен утроенному диаметру с избытком, который меньше седьмой части диаметра, но больше десяти семьдесят первых».
Ряд неравенств приводит в своем знаменитом трактате «Начала» Евклид. Он, например, доказывает, что среднее геометрическое двух положительных чисел не больше их среднего арифметического и не меньше их среднего гармонического
Однако все эти рассуждения проводили словесно, опираясь в большинстве случаев на геометрическую терминологию. Современные знаки неравенств появились лишь в XVII— XVIII вв. Знаки < и > ввел английский математик Т. Гарриот (1560—1621), знаки ? и ? французский математик П. Бугер (1698—1758).)
Пояснення: