Вфирме такси в данный момент свободно 10 машин: 1 черная, 1 желтая и 8 зеленых. по вызову выехала одна из машин, случайно оказавшаяся ближе всего к заказчику. найдите вероятность того, что к нему приедет желтое такси.
Сумма квадратов членов прогрессии может быть записана в виде S1=b1²*(1+q²+q⁴+q⁶+). В скобках стоит бесконечная геометрическая прогрессия со знаменателем q². В условии дана бесконечно убывающая геометрическая прогрессия, а это значит, что её знаменатель q удовлетворяет условию 0<q<1. Но тогда и 0<q²<1, то есть прогрессия в скобках имеет сумму, равную 1/(1-q²). Тогда S1=b1²/(1-q²). А сумма заданной в условии прогрессии S2=b1/(1-q). По условию, S1/S2=b1/(1+q)=16/3. С другой стороны, по условию b2=b1*q=4. Мы получили систему из двух уравнений для определения b1 и q:
b1/(1+q)=16/3; b1*q=4
Из второго уравнения находим q=4/b1. Подставляя это выражение в первое уравнение, приходим к уравнению b1²/(b1+4)=16/3, которое приводится к квадратному уравнению 3*b1²-16*b1-64=0. Дискриминант D=(-16)²-4*3*(-64)=1024=32². Тогда b1=(16+32)/6=8, b2=(16-32)/6=-16/6=-8/3. Но так как прогрессия по условию- убывающая, то b1>b2. Значит, b1=8. Тогда q=b2/b1=4/8=1/2 и искомая сумма S7=8*((1/2)⁷-1)/(1/2-1)=8*(1-(1/2)⁷)/(1-1/2)=16*(1-(1/2)⁷)=16*(1-1/128)=16*127/128=127/8. ответ: 127/8.
Взвести одночлен к стандартному виду, указать его степень: 1) 8у²у³у 2)7х*0,1у*2z 3)5b * (-3ab) 4) 5)-3a²*0,2a*(-10b) 6) x³·(y)³·x Решение: Эти одночлены можно упростить, используя переместительный и сочетательный закон умножения и правила действий со степенями. 1) Степень одночлена равна показателю степени у : 6 2)7х·0,1у·2z =7·0,1·2xyz = 1,4xyz Показатель степени x равен 1, показатель у равен 1, показатель z равен 1. Степень одночлена равна сумме этих показателей: 1+1+1=3. 3) 5b * (-3ab) =5*(-3)ab² = -15ab² Показатель степени а равен 1, показатель b равен 2. Степень одночлена равна сумме этих показателей: 1+2=3. 4) Показатель степени m равен 5, показатель n равен 3. Степень одночлена равна сумме этих показателей: 5+3=8. 5) Показатель степени a равен 1, показатель b равен 4. Степень одночлена равна сумме этих показателей: 1+4=5. 6) Показатель степени x равен 4, показатель y равен 1. Степень одночлена равна сумме этих показателей: 4+1=5.
1/10= 0,1