М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ВаЛеРа06
ВаЛеРа06
03.01.2021 12:50 •  Алгебра

Найдите седьмое по счету неотрицательное число n такое, что число 20^(n)+16^(n)−3^(n)−1 делится на 323.

👇
Ответ:
vanyushagay96
vanyushagay96
03.01.2021
323 = 17 * 19, поэтому число должно одновременно делиться на 17 и 19.

Заметим, что если раскрывать скобки в выражении (a + b)^n, то получится (a^n + n a^(n - 1) b + ...) + b^n — разложение по биному Ньютона, где каждое слагаемое в скобках делится на a. Значит, (a + b)^n даёт такой же остаток при делении на a, что и b^n.

Используем это наблюдение. Представим выражение в виде (17 + 3)^n + (17 - 1)^n - 3^n - 1. По написанному выше это выражение даёт такой же остаток при делении на 17, что и 3^n + (-1)^n - 3^n - 1 = (-1)^n - 1. Для нечётных n последнее выражение равно -2, для чётных — 0. Значит, выражение делится на 17 при чётных n и не делится при нечётных.

Тот же трюк с делимостью на 19: (19 - 1)^n + (19 - 3)^n - 3^n - 1 ≡ (-1)^n + (-3)^n - 3^n - 1. Нечётные n нас уже не интересуют, а при чётных n последнее выражение равно 0, так что исходное выражение делится на n.

Суммируем: выражение делится на 323 при чётных n (и только при таких n). Значит, подходят n = 0, 2, 4, Седьмое число в этом ряду равно 12.

ответ. 12.
4,4(70 оценок)
Ответ:
323 это 17*19
логично что если любое a кратно 17 и a кратно 19 то a кратно 323, потому что 17, 19- просты числа
с этим надеюсь понятно
и еще вспомним то что если a кратно m и b кратно m, то и a+b кратно m
и с этим надеюсь все поняно
 
найдем при каких n 20^(n)+16^(n)−3^(n)−1  кратно 19 и 17 одновременно 
разложим 20^(n)+16^(n)−3^(n)−1 двумя
сначала сгруппируем так
[ 20^(n)-1 ] + [ 16^(n)-3^(n) ]
используя Ньютона-Бинома это легко раскладывается так
19[ 20^(n-1)+20^(n-2)++20+1 ] + 13[ 16^(n-1)+16^(n-2)*3+...+16*3^(n-2)+3^(n-1) ]
заметим что [ 20^(n)-1 ]  кратно 19 при любом n осталось посмотреть при каких n [ 16^(n)-3^(n) ] кратно 19
13[ 16^(n-1)+16^(n-2)*3+...+16*3^(n-2)+3^(n-1) ]
ну 13 ничего не решает так что отбросим его 
16^(n-1)+16^(n-2)*3+...+16*3^(n-2)+3^(n-1)
ну если все сгруппировать по 2 соседние, т.е.
16^(n-1) c 16^(n-2)*3
ну и так далее
и там будет
16^(в какой то стпени)(16+3) 
или начиная с середины когда степень 3 будет больше степени 16 
3^(в какой то стпени)(16+3) 
если n будет четно то все сгруппируется, а если n будет нечетное то в конце останется 3^(n-1)
ну и если сделать то же самое но сгруппировать  
[ 20^(n)−3^(n) ] + [ 16^(n)−1 ]
то мы докажем тоже самое но только для 17
ну и получается 
n=0;2;4;6;8...
n₇=12
4,5(7 оценок)
Открыть все ответы
Ответ:
A1mSh1k
A1mSh1k
03.01.2021
1)квадратным корнем из числа a называется такое число b, что b^2=a.
2)Генеральная совокупность - множество, состоящее из объектов, которые имеют определенные свойства, интересующие нас в данной задаче.
3)основные св-ва квадратных корней:
( \sqrt{ x^{2}} )=|x|
\sqrt{x*y} = \sqrt{x} * \sqrt{y}
\sqrt{ \frac{x}{y} }= \frac{ \sqrt{x}}{ \sqrt{y}}
4)решить неравенство - найти такое множество значений некоторой переменной а, что для каждое а из данного множества удовлетворяет условиям неравенства.
5)квадратными называются уравнения видаa x^{2} +bx+c=0 , где коэффициент а не равен 0
6)арифметический квадратный корень из числа а, где а>=0 называется такое число b, что b=a^2.
7) cлучайная величина - величина, которая в результате какого-либо опыта может принимать случайное, неизвестное заранее значение.
4,5(72 оценок)
Ответ:
Ziko88881
Ziko88881
03.01.2021

Объяснение:

1 .  5)  ( x + 1 )/(x²- xy )     i     ( y - 1 )/(xy - y²) ;

       y*(x + 1 )/xy(x - y )    i    x*(y - 1)/xy(x - y )  ;

    6) 6a/(a - 2b)              i          3a/( a + b ) ;

        6a( a + b )/(a + b)(a - 2b )   i   3a(a - 2b)/(a + b)(a - 2b ) ;

    7) ( 1 + c²)/( c² - 16 )    i    c/( 4 - c ) ;

        ( 1 + c²)/( c² - 16 )    i  - c(c + 4 )/( c² - 16 ) ;

    8) ( 2m + 9 )/(m² + 5m + 25 )   i   m/(m - 5 ) ;

(2m + 9 )(m - 5)/(m - 5)(m²+5m +25 )  i  m( m²+5m +25 )/(m - 5)(m²+5m +25 ).  

           

4,7(6 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ