Левая часть положительна только на интервалах (-9,-3) и (2,6), а правая положительна всегда (0 не корень). Поэтому, если нас интересуют только целые корни, то они могут быть только -8,-7,-6,-5,-4, 3, 4, 5. 1) -8 не подходит, т.к. слева есть множитель x+3, и, значит -8+3=-5 должно делить правую часть 24*8^2, что не выполняется 2) аналогично, -7 не подходит, т.к. слева есть множитель -7-2=-9, который должен делить 24*9^2, что не выполняется. 3) -6 - корень (проверяем подстановкой) 4) -5 - не корень, т.к. 6-(-5)=11 - не делит правую часть 5) -4 - не корень, т,к. 9-4=5 не делит правую часть 6) 3 - корень (проверяем подстановкой) 7) 4 - не корень, т.к. слева есть множитель 4+3=7, а справа его нет 8) 5 не корень, т.к. слева есть 9+5=14, а правая часть на 7 не делится. Итак, целые корни -6 и 3.
(Корень уравнения b^2-2b+1)=1: b₁+b₂=2
b₁*b₂=1
b₁=b₂=1, при подстановке в формулу
сокращенного умножения, знак меняется:
1 => -1 (b-1)(b-1) )
(b(b-1))/((b-1)(b-1)=
b/(b-1)
ответ: (b^2 -b) / b^2 -2b+1=b/(b-1)