(a-1)x²+ax+1=0 1) при а-1=0 а=1 уравнение имеет один корень 1*х+1=0 х+1=0 х=-1 2) при а≠0 (а-1)х²+ах+1=0 при D=0 уравнение имеет один корень D=a²-4(a-1)*1=a²-4a-4=(a-2)² (a-2)²=0 a-2=0 a=2 х= -а/(2(а-1)=-2/(2(2-1)=-2/2*1=-1
ответ: Уравнение имеет один корень при а=-1 и при а=2 . (Этот корень равен -1)
Необходимо начертить единичную окружность и заставить точку "бегать" по окружности: 3П - это 1,5 круга, соответствует углу 180 градусам. Точка будет иметь координаты (-1,0). По определению sin и cos это и есть их значения: sin3П=0, cos3П=-1. Аналогично: sin 4п=0, сos4П =1 sin3,5п=1, сos3,5П=0; sin5/2П=1, cos 5/2П=0 sinПк=0 сosПк=1 (если к -четное ) и cosПк =-1 если к- нечетное число (2к+1) - это формула нечетного числа, к примеру 3, 5, 7, 9 и т.д. Следовательно, sin(2к+1)П=0, cos(2к+1)П =-1..