Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ни четные ,ни нечетные
Объяснение:
1)
f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2)
y = f(x) = √(x³ + x²) - 31*| x³ | ,
D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0 ⇒ x ≥ -1 * * * x ∈ [ -1 ; ∞) * * *
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( -∞ ; - 1) * * *
функция ни чётная ,ни нечётная
На 1 месте может быть любая цифра от 1 до 9, то есть 9 вариантов.
Н 2, 3, 4 и 5 месте - любая от 0 до 9, то есть по 10 вариантов.
Всего 9*10*10*10*10 = 90 000 вариантов.
а) Все цифры разные. На 1 месте может быть любая цифра от 1 до 9 - 9 вариантов.
На 2 месте может быть 0 и любая из 8 других цифр, но не та, которая на 1 месте. - 9 вариантов.
На 3 месте может быть любая из 8 оставшихся цифр. На 4 - любая из 7, на 5 - любая из 6.
Всего 9*9*8*7*6 = 27216 вариантов. Вероятность равна 27216/90 000 = 0,3024
б) Все цифры одинаковые - таких вариантов всего 9, от 11111 до 99999. Вер-сть 1/10 000 = 0,0001
в) Все цифры нечетные На каждом месте может быть одна из 5 цифр - 1,3,5,7,9.
Всего 5*5*5*5*5 = 3125 вариантов. Вероятность равна 3125/90 000 = 0,03472
2)Из обеих урн достают по одному шару.
Какова вероятность, что они будут одного цвета?
5/24*10/24 + 11/24*8/24 + 8/24*6*24 = 31/96 = 32.3%
ответ : 32.3%
3) ПО ОПРЕДЕЛЕНИЮ вероятность это отношение числа нужных вариантов к общему числу вариантов (какого-то события). То есть 2*9!/10! = 1/5;
4)Где-то 50 процентов
Дальше я хз
Объяснение: