1)
33*2^x-1 - 4^x+1 =2. Пусть 2^x =t, тогда 4^x = t^2. Перепишем наше уравнение в виде:
33t/2 - 4t^2=2.
8t^2-33t+4 =0. Считаем Дискриминант.Он равен 961
Тогда t1 = 33+31/8 = 8 t2 = 33-31/8 =1/4.
Учитывая замену 2^x = 8; x =3 и 2^x = 1/4 ; x=-2
ответ: 3 -2
2) x + 12√x -64 =0. Замена √x = t
t^2+12t-64=0. Дискриминант равен 400
t1 = -12 +20 /2 = 4 t2= -12-20/2 = -16.
Учитывая замену
√x = 4 x = 16 √x= -16 (нет корней)
ответ: 16
3) Составим уравнение 5(x+2.4) = 6.25(x-2.4)
5x+12 = 6.25x - 15.
1.25x = 27
x =21.6
ответ: 21,6 км/ч
Задание 1.
x²-10x+27=0
100-4*1*27=-8
Корня из отрицательного числа нет.
Задание 2.
x²+a+1=0
1-4*1*1=-3
Корня из отрицательного числа нет.
Задание 3.
Подставив любые значения вместо a и b, мы придем к выводу, что выражение принимает лишь положительные значения. а не равно b, если одна из переменных равна 0, то другая не может равняться 0.
Представим, что a>b. Тогда получится (Положительное число)(Положительное число+4)+4=Положительное число.
Представим, что a<b. Тогда получится (Отрицательное число)(Отрицательное число+4)+4. Сумма а и -b всегда будет одинаковой, правая скобка будет преобладать над первой за счет +4, при умножении отрицательного числа на отрицательное, в ответе будет положительное число. Значит и выражение будет принимать неотрицательные значения при ЛЮБЫХ переменных.
0,01x = 2,5 + 2,5 0,01x = 0,01 + 2,5
0,01x = 5 0,01x = 2,51
x = 500 x = 251
3) 1/25 = 0,01x - 2,5
0,01x = 0,04 + 2,5
0,01x = 2,54
x = 254