F(sin x) = 2sin^2 x + 3sin x - 2 = (2sin^2 x - 2) + 3sin x = 3sin x - 2cos^2 xпояснение:так как sin^2 + cos^2 = 1, то:2sin^2 x + 2cos^2 x = 2 => 2sin^2x - 2 = -2cos^2 x
1) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 1)^2*(x + 2) = 0 (x - 1)^2 = 0 x - 1 = 0 x = 1
x + 2 = 0 x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 1)(x - 3) = 0 x^2 = 1 x₁ = 1 x₂= - 1;
x - 3 = 0 x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 4)^2*(x - 3) = 0 x - 4 = 0 x = 4
x - 3 = 0 x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 4)(x + 1) = 0
Sin2x=2sinx*cosx=-0.6 sinx*cosx=-0.3 sinx= -0.3/cosx; sin^2x=0.09/cos^2x теперь подставлю его выражение в основное тригонометрическое тождество sin^2x+cos^2x=1 получу .0.09/cos^2x+cos^2x=1 введу новую переменную t=cox^2x тогда 0.09/t+t=1 приводя все к общему знаменателю-в числителе получу 0.09+t^2=t t^2-t+0.09=0 D=1-4*0.09=1-0.36=0.64 t1=(1+0.8)/2=0.9 t2=(1-0.8)/2=0.1 сos^2x=0.9; cosx1=-3/√10; cos^2x=0.1; cosx2=-1/√10 sinx1=-0.3/cosx; sinx=-0.3/(-3/√10)=1/√10 sinx2=-0.3/(-1/√10)=0.3*√10 tgx1=sinx1/cosx1=(1/√10)/(-3/√10)=-1/3; ctgx1=-3 tgx2=sinx2/cosx2=0.3*√10/(-1/√10)=-3; ctgx2=-1/3