Отвечал уже. 1) Повторяется цифра 1. Это 4 варианта: 11ххх, 1х1хх, 1хх1х, 1ххх1. В каждом варианте вместо первой х можно поставить любую цифру из 9: 0, 2, 3, 4, 5, 6, 7, 8, 9. Вместо второй х - любую их 8 оставшихся, вместо третьей х - любую из 7. Всего 4*9*8*7 = 2016 вариантов. 2) Повторяется цифра 0. Это 6 вариантов: 100хх, 10х0х, 10хх0, 1х00х, 1х0х0, 1хх00. В каждом варианте вместо первой х можно поставить любую из 8 цифр 2, 3, 4, 5, 6, 7, 8, 9. Вместо второй х - любую из оставшихся 7 цифр. Всего 6*8*7 = 336 вариантов. 3) Повторяется цифра 2. Это 6 вариантов: 122хх, 12х2х, 12хх2, 1х22х, 1х2х2, 1хх22. В каждом варианте вместо первой х можно поставить любую из 8 цифр 0, 3, 4, 5, 6, 7, 8, 9. Вместо второй х - любую из оставшихся 7 цифр. Всего 6*8*7 = 336 вариантов. 4 - 10) Повторяются цифры 3 - 9. Это каждый раз по 336 вариантов. Всего получается 2016 + 9*336 = 2016 + 3024 = 5040 вариантов.
1) F`(x)=3x²-6x-9 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²-6x-9=0 3·(x²-2x-3)=0 x²-2x-3=0 D=16 x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов Обе точки принадлежат указанному промежутку Не проверяя какая из них точка максимума, какая точка минимума, просто находим F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2) F`(x)=3x²+18x-24 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²+18x+24=0 3·(x²+6x+8)=0 x²+6x+8=0 D=36-4·8=36-32=4 x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов Обе точки не принадлежат указанному промежутку
4х + 2y = 300
y = 100 - x
4x + 200 - 2x = 300
2x = 100
x = 50 ( кроликов )
y = 100 - 50 = 50 ( гусей )
ответ 50 кроликов и 50 гусей