a=4
(2;1)
Объяснение:
Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Объяснение:
Раско́л Ру́сской це́ркви — церковный раскол в Русской православной церкви, начавшийся в 1650-х годах в Москве. Связан с реформой патриарха Никона, направленной на внесение изменений в богослужебные книги московской печати и некоторые обряды в целях их унификации с современными греческими[1][2][3].
Реформа осуществлялась при участии и поддержке царя Алексея Михайловича и некоторых других православных патриархов, была одобрена и подтверждена постановлениями ряда соборов, проходивших в Москве в 1650—1680-х годах. Противники реформы, впоследствии получившие название «старообрядцы», были преданы анафеме[4] на Московском соборе 1656 года (только держащиеся двуперстного крестного знамения) и на Большом Московском соборе 1666—1667 годов[1][2][5]. В результате появились старообрядческие группы, впоследствии разделившиеся на многочисленные согласия[3].
Объяснение: