М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sashkaignatoly
sashkaignatoly
05.07.2020 08:33 •  Алгебра

Найдите область определения функции y=√x+√4-x²

👇
Ответ:
ира1005
ира1005
05.07.2020
Вот я думаю что область определения будет такова
Найдите область определения функции y=√x+√4-x²
4,4(10 оценок)
Открыть все ответы
Ответ:
baikolepus
baikolepus
05.07.2020
Х+у=10
х³ + у³ = (х+у)(х²+ху+у²) = 10(х²+ху+у²)
чтобы сумма кубов была наименьшей, нужно найти минимум для выражения в скобках (т.к. 10 уже не изменится)))
х²+ху+у² = х²+2ху+у² - ху = (х+у)² - ху = 100 - ху = 100 - (10-у)у = 
= 100 - 10у + у²  это квадратный трехчлен (график -- парабола, ветви вверх))), своего минимума достигает в вершине параболы...
абсцисса вершины: у₀ = -b / (2a) = 10/2 = 5
тогда х = 10-у = 5
другой вариант рассуждений:
х = 10-у
х³ + у³ = (10-у)³ + у³ = 10³ - 300у + 30у² - у³ + у³ = 30у² - 300у + 1000
вновь парабола, ветви вверх, минимум в вершине для 
у₀ = -b / (2a) = 300/(2*30) = 10/2 = 5
тогда х = 5 тоже))
4,5(89 оценок)
Ответ:
Yulia14929
Yulia14929
05.07.2020

а) Выбрать 4 ромашки можно C^4_8=\dfrac{8!}{4!4!}=70 а 3 незабудки - C^3_9=\dfrac{9!}{6!3!}=84 По правилу произведения, составить букет из 7 цветов, в котором 4 ромашки и 3 незабудки можно 70\cdot 84=5880

ответ

b) Как минимум 4 незабудки это 4 незабудки или 5 незабудки или 6 незабудки или 7 незабудки.. Чувствуется что здесь правило сложения. Четыре незабудки и три ромашки можно C^4_9\cdot C^3_8=\dfrac{9!}{4!5!}\cdot\dfrac{8!}{5!3!}=126\cdot 56=7056 Выбрать пять незабудки и две ромашки можно C^5_9\cdot C^2_8=\dfrac{9!}{5!4!}\cdot\dfrac{8!}{6!2!}=126\cdot28=3528 Выбрать шесть цветов незабудки и одна ромашку можно C^6_9\cdot C^1_8=\dfrac{9!}{6!3!}\cdot 8=84\cdot8=672 И наконец выбрать семь цветов незабудки можно C^7_9=\dfrac{9!}{7!2!}=36 По правилу сложения, составить букет из 7 цветов, в котором как минимум должны быть 4 незабудки можно 7056 + 3528+672+36=11292

ответ: 11292.

4,6(19 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ