Объяснение:
1. Дробь равняется нулю, когда в числителе ноль, а знаменатель отличен от нуля:
(x^2 - 9)/(x^3 + 2x^2 + 9) = 0;
{x^2 - 9 = 0;
{x^3 + 2x^2 + 9 ≠ 0.
2. Решим первое уравнение, разложив разность квадратов на множители по соответствующей формуле сокращенного умножения:
a^2 - b^2 = (a + b)(a - b);
x^2 - 9 = 0;
x^2 - 3^2 = 0;
(x + 3)(x - 3) = 0.
3. Приравняем каждый множитель к нулю:
[x + 3 = 0;
[x - 3 = 0;
[x = -3;
[x = 3.
4. Вычисляем значение знаменателя для каждого числа:
a) x = -3;
x^3 + 2x^2 + 9 = (-3)^3 + 2 * (-3)^2 + 9 = -27 + 18 + 9 = 0.
x = -3 не является корнем уравнения.
b) x = 3;
x^3 + 2x^2 + 9 = 3^3 + 2 * 3^2 + 9 = 27 + 18 + 9 = 54 ≠ 0.
x = 3 является корнем уравнения.
ответ: 3.
lg(x+y)=lg(x-y)+lg8
lg(x²+y²)=lg10+lg13
lg(x+y)=lg(x-y)*8
lg(x²+y²)=lg130
lg(x+y)=lg(8x- 8y)
x²+y² =130
x+y=8x- 8y
x²+y² =130
7x=9y x=9y/7
(9y/7)²+y² =130
(81y²/49) +y² =130 домножим на 49
81у² +49у²= 6370
130у²=6370
у²=49 ⇒ у₁= 7 х₁=9*7/7 =9
у₂= -7 х₂=-7*9/7 = -9 - эта пара корней не подходит под ОДЗ