Исходное число должно быть четырехзначным. Пусть исходное число будет ABCD=1000A+100B+10C+D. Из четырехзначного числа ABCD вычли сумму его цифр и получили 2016: 1000A+100B+10C+D-(А+В+С+D)=2016 Раскроим скобки и решим: 1000A+100B+10C+D-А-В-С-D=2016 999А+99В+9С=2016 Сократим на 9: 111А+11В+С=224 Очевидно, что 1<А>3, т.е. А=2 (2000). 111*2+11В+С=224 222+11В+С=224 11В+С=224-222 11В+С=2 С=2-11В, где С и В – натуральные положительные числа от 0 до 9. При значениях В от 1 до 9, С – отрицательное число. Значит В=0, тогда С=2-11*0=2 Получаем число 202D, где D - натуральное положительное число от 0 до 9, т.е. возможные исходные значения от 2020 до 2029. 9 – максимальное значение D, значит наибольшее возможное исходное значение 2029. Проверим: 2029 – (2+2+0+9)=2029-13=2016 ответ: наибольшее возможное исходное значение число 2029
Представьте число 120 в виде произведения двух чисел, одно из которых на два меньше другого. Пусть х - меньшее число, тогда х+2 - большее число. х*(х+2)=120 х²+2х=120 х²+2х-120=0 D=b²-4ac=2²-4*1*(-120)=4+480=484 (√484=22) х₁= = 10 х₂= = -12
или по теореме Виета: х₁+х₂=-2 х₁*х₂=-120 х₁=10 х₂= -12
Если наименьшее число х=10, то наибольшее число будет равно х+2=10+2=12 10*12=120 Если наименьшее число будет равно х=-12, то наибольшее число будет равно х+2=-12+2=-10 (-12)*(-10)=120