Пусть x- скорость лодки в стоячей воде y- cкорость течения реки Тогда, x+y -скорость лодки по течению x-y - скорость лодки против течения Тогда, 16/x+y(ч)время за которое проплывает лодка 16 км по течению 16/x-y(ч) 16 км против течения А по условию по течению лодка проплывает на 6 часов быстрее чем против значит можно составить уравнение: 16/x-y -16/x+y =6 Также по условию известно ,что скорость лодки на 2 км больше скорости течения реки Состав им второе уравнение: x-y=2 Пешим полученную систему уравнений : Сперва упрастим первое уравнение избавившись от знаменателя ,получим : 32y=6x^2-6y^2 Затем выразим x из второго уравнения ,получим x=y+2 и подставим в первое: 32y=6*(2+y)^2-6y 32y=24+24y+6y^2-6y^2 8y=24 y=3 X=3+2 X=5 ответ :скорость лодки 5 км/ч скорость реки 3км/ч
Которые равны друг другу при всех допустимых значениях переменных, которые входят в данные выражения. Пример: sin^2(x) + cos^2(x) = 1, (это верно для любого икс). (x+y)^2 = x^2 + 2xy + y^2. (это верно для любых значений икс и игрек), (x/y)^2 = (x^2)/(y^2) (это верно для любого икса и игрека, не равного нулю). tg(2x) = 2tg(x)/(1- tg^2(x)). Важно!: допустимые значения переменных правой и левой части могут быть различными! Тогда за множество допустимых значений берут пересечение этих множеств. НО! Это всегда нужно учитывать при тождественных преобразованиях выражений, а именно: те значения, которые "выкалываются" (т.е. выпадают из изначального множества) все равно нужно учитывать либо непосредственно либо еще как-то.