Y = 5*x-sin(2*x) 1. Находим интервалы возрастания и убывания. Первая производная равна:. f'(x) = -2cos(2x)+5 Находим нули функции. Для этого приравниваем производную к нулю -2cos(2x)+5 = 0 Для данного уравнения корней нет. 2. Находим интервалы выпуклости и вогнутости функции. Вторая производная равна: f''(x) = 4sin(2x) Находим корни уравнения. Для этого полученную функцию приравняем к нулю. 4sin(2x) = 0 Откуда точки перегиба: x1 = 0 На интервале (-∞ ;0) f''(x) < 0, функция выпукла На интервале (0; +∞) f''(x) > 0, функция вогнута
Y = 5*x-sin(2*x) 1. Находим интервалы возрастания и убывания. Первая производная равна:. f'(x) = -2cos(2x)+5 Находим нули функции. Для этого приравниваем производную к нулю -2cos(2x)+5 = 0 Для данного уравнения корней нет. 2. Находим интервалы выпуклости и вогнутости функции. Вторая производная равна: f''(x) = 4sin(2x) Находим корни уравнения. Для этого полученную функцию приравняем к нулю. 4sin(2x) = 0 Откуда точки перегиба: x1 = 0 На интервале (-∞ ;0) f''(x) < 0, функция выпукла На интервале (0; +∞) f''(x) > 0, функция вогнута
8x+3x-5x-9x=-4+3-1+4
-3x=2
X=-2/3
3x-11+8-12x=5x-2-3x+7
3x-12x-5x+3x=-2+7+11-8
-11x=8
X=-8/11