М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
serdykivka
serdykivka
28.06.2020 01:37 •  Алгебра

Расположите числа 1/9 0,7, 0,68, в порядке убывания

👇
Ответ:
Kiber04ек
Kiber04ек
28.06.2020
7 0,68 1/9 0 лошогпеишьшинршьншм5пшгог8п
4,7(10 оценок)
Открыть все ответы
Ответ:
elena1alekseevna
elena1alekseevna
28.06.2020
Итак , по условию нам нужно решить уравнение и выписать меньший из корней в ответ
Перейдем непосредственно к решению:
(-5x-3)(2x-1)=0
Перемножив получим:
-10x^2+5x-6x+3=0
Выполним возможное упрощение и получим: 
-10x^2-x+3=0
D=b^2-4ac=1+120=121
x1=(-b+√D)/2a=(1+11)/-20=12/-20=-0,6
x2=(-b-√D)2a=(1-11)/-20=10/-20=-0,5
А вот теперь поломаем голову, -0.5 будет большим корнем , но к нулю будет он ближе , но -0.6 меньший корень , но к нулю он дальше , но именно -0.6 нам и нужно записать в ответ как меньший корень
4,4(91 оценок)
Ответ:
drewetova
drewetova
28.06.2020

(7^n +3n -1)\ \vdots\ 9

1 шаг. Проверим справедливость утверждения при n=1:

7^1+3\cdot1-1=7+3-1=9\ \vdots\ 9 - верно

2 шаг. Предположим, что при n=k следующее утверждение верно:

(7^k +3k -1)\ \vdots\ 9

3 шаг. Докажем, что при n=k+1 следующее утверждение также будет верно:

(7^{k+1} +3(k+1) -1)\ \vdots\ 9

Для доказательства выполним преобразования:

7^{k+1} +3(k+1) -1=7\cdot7^k+3k+3-1=7^k+6\cdot7^k+3k+3-1=

=(7^k+3k-1)+6\cdot7^k+3=(7^k+3k-1)+3(2\cdot7^k+1)

Рассмотрим получавшуюся сумму. Первое слагаемое (7^k+3k-1) делится на 9 по предположению, сделанному на предыдущем шаге. Во втором слагаемом 3(2\cdot7^k+1) первый множитель делится на 3. Значит, остается доказать, что второй множитель также делится на 3. Докажем это, используя арифметику остатков:

2\cdot7^k+1\equiv2\cdot(7-2\cdot3)^k+1=2\cdot1^k+1=2\cdot1+1=2+1=3\pmod{3}

Мы получили, что выражение 2\cdot7^k+1 дает при делении на 3 такой остаток, как и число 3. Но число 3 кратно 3, значит и выражение 2\cdot7^k+1 кратно 3.

Возвращаясь к выражению (7^k+3k-1)+3(2\cdot7^k+1), повторим, что первое слагаемое делится на 9, второе слагаемое представляет собой произведение двух множителей, каждое из которых делится на 3, то есть само слагаемое делится на 9. Сумма двух выражений, делящихся на 9, также делится на 9, или другими словами, кратна 9. Доказано.

4,4(70 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ