Чтобы строить такие графики функции нужно под х подставлять любое числа(желательно адекватное) например подставим число 0 вийдет 1/3*0+2=2 Мы получили 1 точку в которой х=0,а у=2; Подставляем 2 число например 3. 1/3*3+2=3.Вот 2 точка где х=3,у=3. Теперь позначаем ети две точки на системе кординат и проводим через них прямую и вот будет график функции.
V - знак квадратного корня V(5x+7) - V(x+4) =4x+3 ОДЗ: {5x+7>=0 {x+4>=0
{5x>= -7 {x>= -4
{x>=-7/5 {x>= -4
Чтобы избавиться от рациональности, возведем все члены уравнения в квадрат, но для этого правая часть уравнения должна быть положительной: 4x+3>=0; x>= -3/4 У нас получилась следующая ОДЗ: {x>= -7/5 {x>= -4 {x>= -3/4 Решением этой системы будет промежуток: [-3/4; + бесконечность) Итак, возводим в квадрат: (5x+7)^2 - (x+4)^2 = (4x+3)^2 25x^2+70x+49-x^2-8x-16=16x^2+24x+9 24x^2+62x+33= 16x^2+24x+9 24x^2+62x+33-16x^2-24x-9=0 8x^2+38x+24=0 |:2 4x^2+19x+12=0 D= 19^2-4*4*12=169 x1=(-19-13)/8=-4 - это посторонний корень, т.к. не входит в промежуток [-3/4; + беск.) x2=(-19+13)/8= -3/4 Получается, что уравнение имеет один корень => k=1 Корень x=-3/4 принадлежит интервалу (-1;0), значит q=-3/4 Решим уравнение 5k+4q= 5*1+4*(-3/4)=5-3=2 ответ:2
Графики во вложении. Все функции в условии, являются уравнениями чей график - обычная прямая. Так как они имеют вид: - a угловой коэффициент,b точка пересечения прямой с осью у.
У каждой прямой , следовательно, данные прямые пересекают ось у в начале координат. А так же ось х в начале координат. Так как:
Это прямые, а значит: - область определения. - область значений.
Теперь, по отдельности строим каждый график: 1.
Здесь , следовательно, данная функция всегда возрастает. Нуль функции:
Знак функции:
2.
Здесь следовательно, данная функция всегда убывает. Нуль функции:
Знак функции:
3.
Здесь , следовательно, данная функция всегда возрастает. Нуль функции:
Знак функции:
4.
Здесь следовательно, данная функция всегда убывает. Нуль функции:
Знак функции:
5.
Здесь , следовательно, данная функция всегда возрастает. Нуль функции:
Знак функции:
6.
Здесь следовательно, данная функция всегда убывает. Нуль функции: