М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Maksim55666
Maksim55666
20.04.2023 14:06 •  Алгебра

Докажите торжество sin⁴a-sin²=cos⁴a-cos²

👇
Ответ:
lobster32
lobster32
20.04.2023
sin^4 \alpha -sin^2 \alpha =sin^2 \alpha (sin^2 \alpha-1)=-sin^2 \alpha cos^2 \alpha \\ cos^4 \alpha -cos^2 \alpha =cos^2 \alpha (cos^2 \alpha -1)=-sin^2 \alpha cos^2 \alpha
4,8(39 оценок)
Открыть все ответы
Ответ:
Husky333
Husky333
20.04.2023
Вот первое
ответ: x=3 y=-13x-y=10x/3 + (x+1)/5=1                                                                       3x-y=10                                                                                                 3x=10+y                                            x/3+x+1/5=1                                                                           y=9/2-10(5x+3x+3-15)/15=0                                                               y=(9-20)/28x-12=0                                                                                   y=-11/2x=3/2                               а второе не могу , не получается вот пример по которому сам второе реши сложения в решении систем уравнений Системой линейных уравнений с двумя неизвестными - это два или несколько линейных уравнений, для которых необходимо найти все их общие решения. Мы будем рассматривать системы из двух линейных уравнений с двумя неизвестными. Общий вид системы из двух линейных уравнений с двумя неизвестными представлен на рисунке ниже:{ a1*x + b1*y = c1,
{ a2*x + b2*y = c2Здесь х и у неизвестные переменные, a1,a2,b1,b2,с1,с2 – некоторые вещественные числа. Решением системы двух линейных уравнений с двумя неизвестными называют пару чисел (x,y) такую, что если подставить эти числа в уравнения системы, то каждое из уравнений системы обращается в верное равенство. Существует несколько решения системы линейных уравнений. Рассмотрим один из решения системы линейных уравнений, а именно сложения. Алгоритм решения сложенияАлгоритм решения системы линейных уравнений с двумя неизвестными сложения.1. Если требуется, путем равносильных преобразований уравнять коэффициенты при одной из неизвестных переменных в обоих уравнениях.2. Складывая или вычитая полученные уравнения получить линейное уравнение с одним неизвестным3. Решить полученное уравнение с одним неизвестным и найти одну из переменных.4. Подставить полученное выражение в любое из двух уравнений системы и решить это уравнение, получив, таким образом, вторую переменную.5. Сделать проверку решения.Пример решения сложенияДля большей наглядности решим сложения следующую систему линейных уравнений с двумя неизвестными:{3*x + 2*y = 10;
{5*x + 3*y = 12;

Так как, одинаковых коэффициентов нет ни у одной из переменных, уравняем коэффициенты у переменной у. Для этого умножим первое уравнение на три, а второе уравнение на два.{3*x+2*y=10 |*3
{5*x + 3*y = 12 |*2Получим следующую систему уравнений:{9*x+6*y = 30;
{10*x+6*y=24;

Теперь из второго уравнения вычитаем первое. Приводим подобные слагаемые и решаем полученное линейное уравнение.10*x+6*y – (9*x+6*y) = 24-30; x=-6;Полученное значение подставляем в первое уравнение из нашей исходной системы и решаем получившееся уравнение.{3*(-6) + 2*y =10;
{2*y=28; y =14;Получилась пара чисел x=6 и y=14. Проводим проверку. Делаем подстановку.{3*x + 2*y = 10;
{5*x + 3*y = 12;

{3*(-6) + 2*(14) = 10;
{5*(-6) + 3*(14) = 12;

{10 = 10;
{12=12;

Как видите, получились два верных равенства, следовательно, мы нашли верное решение.ответ: (6, 14)
4,6(32 оценок)
Ответ:
limi10
limi10
20.04.2023
Вот первое
ответ: x=3 y=-13x-y=10x/3 + (x+1)/5=1                                                                       3x-y=10                                                                                                 3x=10+y                                            x/3+x+1/5=1                                                                           y=9/2-10(5x+3x+3-15)/15=0                                                               y=(9-20)/28x-12=0                                                                                   y=-11/2x=3/2                               а второе не могу , не получается вот пример по которому сам второе реши сложения в решении систем уравнений Системой линейных уравнений с двумя неизвестными - это два или несколько линейных уравнений, для которых необходимо найти все их общие решения. Мы будем рассматривать системы из двух линейных уравнений с двумя неизвестными. Общий вид системы из двух линейных уравнений с двумя неизвестными представлен на рисунке ниже:{ a1*x + b1*y = c1,
{ a2*x + b2*y = c2Здесь х и у неизвестные переменные, a1,a2,b1,b2,с1,с2 – некоторые вещественные числа. Решением системы двух линейных уравнений с двумя неизвестными называют пару чисел (x,y) такую, что если подставить эти числа в уравнения системы, то каждое из уравнений системы обращается в верное равенство. Существует несколько решения системы линейных уравнений. Рассмотрим один из решения системы линейных уравнений, а именно сложения. Алгоритм решения сложенияАлгоритм решения системы линейных уравнений с двумя неизвестными сложения.1. Если требуется, путем равносильных преобразований уравнять коэффициенты при одной из неизвестных переменных в обоих уравнениях.2. Складывая или вычитая полученные уравнения получить линейное уравнение с одним неизвестным3. Решить полученное уравнение с одним неизвестным и найти одну из переменных.4. Подставить полученное выражение в любое из двух уравнений системы и решить это уравнение, получив, таким образом, вторую переменную.5. Сделать проверку решения.Пример решения сложенияДля большей наглядности решим сложения следующую систему линейных уравнений с двумя неизвестными:{3*x + 2*y = 10;
{5*x + 3*y = 12;

Так как, одинаковых коэффициентов нет ни у одной из переменных, уравняем коэффициенты у переменной у. Для этого умножим первое уравнение на три, а второе уравнение на два.{3*x+2*y=10 |*3
{5*x + 3*y = 12 |*2Получим следующую систему уравнений:{9*x+6*y = 30;
{10*x+6*y=24;

Теперь из второго уравнения вычитаем первое. Приводим подобные слагаемые и решаем полученное линейное уравнение.10*x+6*y – (9*x+6*y) = 24-30; x=-6;Полученное значение подставляем в первое уравнение из нашей исходной системы и решаем получившееся уравнение.{3*(-6) + 2*y =10;
{2*y=28; y =14;Получилась пара чисел x=6 и y=14. Проводим проверку. Делаем подстановку.{3*x + 2*y = 10;
{5*x + 3*y = 12;

{3*(-6) + 2*(14) = 10;
{5*(-6) + 3*(14) = 12;

{10 = 10;
{12=12;

Как видите, получились два верных равенства, следовательно, мы нашли верное решение.ответ: (6, 14)
4,6(60 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ