

Для начала вспомним графики функций y = [x] и y = {x}:
Первый представляет собой целую часть числа x. Например
[3,2] = [3 + 0,2] = 3
[-4,5] = [-5 + 0,5] = -5
График такой функции прикреплён во вложении.
Второй представляет собой дробную часть аргумента x, то есть y = x - [x]. Например
{3,2} = 3,2 - 3 = 0,2
{-4,5} = -4,5 - (-5) = 0,5
График также во вложении.
Теперь перейдём к заданию:
При выполнении используются правила геометрических преобразований.
1) y = [x + 1]
Берём за основу график функции y = [x] и смещаем его влево вдоль оси OX на 1.
2) y = [x] + 2
Берём за основу график функции y = [x] и смещаем его вверх вдоль оси OY на 2 единицы.
3) y = {x - 1/3}
Берём за основу график функции y = {x} и смещаем его вправо вдоль оси OX на 1/3 единицы.
4) y = {x} + 1
Берём за основу график функции y = {x} и смещаем его вверх вдоль оси OY на 1.
5) y = [3x + 1]
Сначала рассмотрим график y = [x + 1]. Он уже построен в пункте 1)Но в требуемом графике "3x", поэтому нужно к графиком y = [x + 1] применить ещё одно преобразование:Сначала рассмотрим график y = [3x]. По правилу геометрического преобразования, чтобы построить этот график, надо график функции y = [x] сжать в 3 раза вдоль оси OX.Так как в нашем случае функции имеет вид y = [x + 1], то и сжимать в три раза будем именно её.Таким образом, чтобы построить график функции y = [3x + 1] надо:
1) Взять за основу график функции y = [x] и сместить его влево вдоль оси OX на 1.
2) Полученный график сжать вдоль оси OX в 3 раза.
Все графики во вложении
![Построить график функции: 1) у=[х+1]; 2) у=[х]+2; 3) у={х-1/3}; 4) у={х}+1; 5) у=[3х+1]. с объяснени](/tpl/images/0968/4679/f1000.jpg)
2a^2 - 3b) * (a^2 + 2ab + 5b^2) = 2a^4 + 4a^3 * b + 10a^2 * b^2 - 3a^2 * b - 6ab^2 - 15b^3;
2) (x^2 - 2xy) * (x^2 - 5xy + 3y^2) = x^4 - 5x^3 * y + 3x^2 * y^2 - 2x^3 * y + 10x^2 * y^2 - 6xy^3 = x^4 - 7x^3 * y + 13x^2 * y^2 - 6xy^3;
3) (x - y) * (x^3 + x^2 * y + x * y^2 + y^3) = x^4 + x^3 * y + x^2 * y^2 + xy^3 - x^3 * y - x^2 * y^2 - xy^3 - y^4 = x^4 - y^4;
4) (a + b) * (a^3 - a^2 * b + a * b^2 - b^3) = a^4 - a^3 * b + a^2 * b^2 - ab^3 + a^3 * b - a^2 * b^2 + ab^3 - b^4 = a^4 - b^4;
5) (5a - 4b) * (a^3 + 2a^2 * b - 5a * b^2 - 3b^3) = 5a^4 + 10a^3 * b - 25a^2 * b^2 - 15ab^3 - 4a^3 * b - 8a^2 * b^2 + 20ab^3 + 12b^4 = 5a^4 + 6a^3 * b - 33a^2 * b^2 + 5ab^3 + 12b^4;
6) (2x + 3y) * (x^3 + 3x^2 * y - 3x * y^2 + 4y^3) = 2x^4 + 6x^3 * y - 6x^2 * y^2 + 8xy^3 + 3x^3 * y + 9x^2 * y^2 - 9xy^3 + 12y^4 = 2x^4 + 9x^3 * y + 3x^2 * y^2 - xy^3 + 12y^4.
Объяснение:
если модешь сделай лутшим ответом