p и q - простые => p + q > 0 => (p – q)³ > 0 => p – q > 0 => ∀ (p;q) ∃ n∈N: p – q = n => p = q + n
q+n+q=n^3 => q=(n^3-n)/2 => q = (n-1)n(n+1)/2
Из трех подряд идущих натуральных чисел одно делится на 3 => (n-1)n(n+1) ⁞ 3. Т.к. НОД(2, 3)=1, то q = (n-1)n(n+1)/2 ⁞ 3. Т.к. q простое, то q=3.
(n-1)n(n+1)=6
n натуральное => (n-1)³<6=>n-1<∛6<∛8=2 => n<2+1=3
n=1 => (n-1)n(n+1)=0≠6
n=2 => (n-1)n(n+1)=1*2*3=6 - верно => p=3+2=5 - простое
ответ: (5; 3)
получается -8=k4+l
дальше можем сделать в обычный вид: k4+l=-8
и методом подбора вставить числа, например на место k число 2, а на место l - (-16)
4*2+(-16)=-8
-10=k(-8)+l
k(-8)+l=-10
k=-2 l=-26
-2*(-8)+(-26)=-10