Понятно, что х - двузначное число. Пусть x=10a+b, где а, b - его цифры. 1) Если a+b - однозначное число, то его сумма цифр совпадает с ним и х+у+z=(10a+b)+(a+b)+(a+b)=60, откуда 12а+3b=60, т.е. 4а+b=20. Возможны следующие варианты: a=5, b=0; а=4, b=4. Если a<4, то b>8 и тогда а+b не является однозначным. 2) Если а+b - двузначное, то его первая цифра равна 1, а вторая равна a+b-10, т.е. z=1+(a+b-10)=а+b-9. Итак, x+y+z=(10a+b)+(a+b)+(a+b-9)=60, откуда 12а+3b=69, т.е. 4а+b=23. Возможен только вариант а=4, b=7, т.к. .если a=5, то b=3 и a+b=8 - однозначное, а все остальные, очевидно, не подходят. Значит итоговый ответ: число х может быть 50, 44 или 47.
Нам задана функция графиком данной функции будет гипербола, "сдвинутая" влево на 2. (см. приложенные файлы) свойства: ∪ E(f): ∪ нули функции отсутствуют, функция бесконечно стремится к нулю, но это значение НИКОГДА не достигается. промежутки знакопостоянства: принимает только отрицательные значения на интервале: только положительные на интервале: функция монотонно убывает при x>-2 и при x<-2 функция не является ни четной, ни нечетной функция непериодическая. функция не ограничена ни сверху, ни снизу. претерпевает разрыв в точке х=-2.
x^2 - (2m+1)x + m^2 +2m=0
количество корней зависит от дискриминанта
в нашем случае D должен быть раен 0
то есть
D=(2m+1)^2- 4(m^2 +2m)= 4m^2+4m+1-4m^2-8m= ( подчеркнутые числа взаимоуничтожаются)= -4m+1
мы выяснили что дискриминант должен быть равен 0 значит приравниваем
-4m+1=0
-4m=-1
m= 1/4