Найдите наименьшее трехзначное число, следующим свойством: если к нему приписать справа число, большее на 1, то результат (шестизначное число) будет точным квадратом.
Если исходное число равно A, то число, большее на 1, равно A + 1, а новое шестизначное число равно 1000A + (A + 1) = 1001A + 1. 1001A + 1 должно быть полным квадратом.
100 <= A <= 998, поэтому 100101 <= n^2 <= 998999, 317 <= n <= 999.
1001 = 7 * 11 * 13. Поскольку n < 1000, n - 1 или n + 1 не могут делиться на все три числа одновременно, перебираем варианты.
1) n - 1 делится на 7, n + 1 делится на 11 * 13 = 143. n + 1 = 143k, k < 7 n - 1 = 143k - 2 = 140k + (3k - 2) делится на 7, т.е. 3k - 2 делится на 7. Перебором находим k = 3, n = 143 * 3 - 1 = 428. n^2 = 183184, A = 183
2) n - 1 делится на 11, n + 1 делится на 7 * 13 = 91. n + 1 = 91k, k < 11 n - 1 = 91k - 2 = 88k + (3k - 2) делится на 11, т.е. 3k - 2 делится на 11. Перебором находим k = 8, n = 91 * 8 - 1 > 428
3) n - 1 делится на 13, n + 1 делится на 7 * 11 = 77. n + 1 = 77k, k < 13 n - 1 = 77k - 2 = 78k - (k + 2), k + 2 делится на 13, откуда k = 11. n = 77 * 11 - 1 > 428
4) n + 1 делится на 7, n - 1 делится на 143 n - 1 = 143k, k < 7 n + 1 = 143k + 2 = 140k + (3k + 2), 3k + 2 делится на 7, k = 7 - 3 = 4. n = 143 * 4 + 1 > 428
5) n + 1 делится на 11, n - 1 делится на 91. n - 1 = 91k, k < 11 n + 1 = 88k + (3k + 2), 3k + 2 делится на 11, k = 11 - 8 = 3 n = 91 * 3 + 1 = 274 < 317, не подходит
6) n + 1 делится на 13, n - 1 делится на 77. n - 1 = 77k, k < 13 n + 1 = 78k - (k - 2), k - 2 делится на 13, k = 13 - 11 = 2 n = 77 * 2 + 1 = 155 < 317, не подходит.
Система линейных уравнений, графиком каждого уравнения является прямая. Система не имеет решений, значит графики не пересекаются. Графики не пересекаются, значит прямые параллельны. Надо ответить на вопрос, когда прямые параллельны. Когда их коэффициенты при х и у пропорциональны 2:1=(-1):а а=-0,5
Но параллельные прямые могут совпасть, чтобы этого не случилось, надо чтобы отношение свободных коэффициентов не было пропорционально отношению коээфициентов при х и у. В нашем случае это так 2:1≠5:2 ответ. а=-0,5
Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами. подобных слагаемых,раскрытие скобок.правила выполнения этих преобразований: чтобы подобные слагаемые,надо сложить их коэффициенты и результат умножить на общую буквенную часть; если перед скобками стоит знак плюс,то скобки можно опустить,сохранив знак каждого слагаемого,заключённого в скобки; если перед скобками стоит знак минус,то скобки можно опустить,изменив знак каждого слагаемого,заключённого в скобки.
1001A + 1 = n^2
1001A = n^2 - 1
1001A = (n - 1)(n + 1)
100 <= A <= 998, поэтому 100101 <= n^2 <= 998999, 317 <= n <= 999.
1001 = 7 * 11 * 13. Поскольку n < 1000, n - 1 или n + 1 не могут делиться на все три числа одновременно, перебираем варианты.
1) n - 1 делится на 7, n + 1 делится на 11 * 13 = 143.
n + 1 = 143k, k < 7
n - 1 = 143k - 2 = 140k + (3k - 2) делится на 7, т.е. 3k - 2 делится на 7.
Перебором находим k = 3, n = 143 * 3 - 1 = 428.
n^2 = 183184, A = 183
2) n - 1 делится на 11, n + 1 делится на 7 * 13 = 91.
n + 1 = 91k, k < 11
n - 1 = 91k - 2 = 88k + (3k - 2) делится на 11, т.е. 3k - 2 делится на 11.
Перебором находим k = 8, n = 91 * 8 - 1 > 428
3) n - 1 делится на 13, n + 1 делится на 7 * 11 = 77.
n + 1 = 77k, k < 13
n - 1 = 77k - 2 = 78k - (k + 2), k + 2 делится на 13, откуда k = 11.
n = 77 * 11 - 1 > 428
4) n + 1 делится на 7, n - 1 делится на 143
n - 1 = 143k, k < 7
n + 1 = 143k + 2 = 140k + (3k + 2), 3k + 2 делится на 7, k = 7 - 3 = 4.
n = 143 * 4 + 1 > 428
5) n + 1 делится на 11, n - 1 делится на 91.
n - 1 = 91k, k < 11
n + 1 = 88k + (3k + 2), 3k + 2 делится на 11, k = 11 - 8 = 3
n = 91 * 3 + 1 = 274 < 317, не подходит
6) n + 1 делится на 13, n - 1 делится на 77.
n - 1 = 77k, k < 13
n + 1 = 78k - (k - 2), k - 2 делится на 13, k = 13 - 11 = 2
n = 77 * 2 + 1 = 155 < 317, не подходит.
ответ. 183