Пусть х км/ч - скорость течения реки, тогда скорость теплохода по течению 18 + х км/ч, против течения 18 - х км/ч. Зная, что в каждую сторону он плыл 160км, останавливался 2 часа и на весь путь ушло 20часов, составим и решим уравнение:
160/(18 +х ) + 160/(18 - х) + 2 = 20 ( общий знаменатель ( 18 +х) (18 -х))
160(18-х)+160(18-х)-18(18-х)(18+х) = 0
2880-160х+2880+160х-5832+18x^{2} =0
18x^{2} - 72 =0
18x^{2} = 72
x^{2} = 4
х=-2 - не подходит, т.к скорость - число больше нуля
х = 2
ответ: 2 км/ч скорость течения реки
R,H - радиус основания и высота конуса.
Из подобия треугольников находим:
r/(H-h) = R/H, откуда
R = r*H/(H-h).
Подставляем R в формулу для объема конуса:
V = (1/3)*H*п*R^2 = (п/3)*r^2*H^3/(H-h)^2.
Дифференцируем V по H:
dV/dH = (п*r^2)*(H^2/(H-h)^2 - (2/3)*H^3/(H-h)^3)=
=(п*r^2*H^2/(H-h)^2)*(1-(2/3)*H/(H-h)).
Приравнивая производную нулю.
Отбрасываем решение H=0 так как H>h, и находим экстремум при H = 3*h. Этот единственный экстремум должен соответствовать минимуму.
То есть, объем описанного конуса минимален, когда высота конуса в три
раза больше высоты цилиндра.