Упр.860 по алгебре
Алимов 10-11 класс с пояснениями бесплатно
Изображение задания 860 Написать уравнение касательной к графику функции у = f (х) в точке с абсциссой х0:1) f(x)=x2+x+1,x0=1;2) f(x)=x-3x,x0=2;3) f(x)=1/x,x0=3;4)...
Решение #1
Изображение 860 Написать уравнение касательной к графику функции у = f (х) в точке с абсциссой х0:1) f(x)=x2+x+1,x0=1;2) f(x)=x-3x,x0=2;3) f(x)=1/x,x0=3;4)...
Дополнительное изображение
Дополнительное изображение
Дополнительное изображение
Решение #2
Изображение 860 Написать уравнение касательной к графику функции у = f (х) в точке с абсциссой х0:1) f(x)=x2+x+1,x0=1;2) f(x)=x-3x,x0=2;3) f(x)=1/x,x0=3;4)...
Загрузка...
860 Написать уравнение касательной к графику функции у = f (х) в точке с абсциссой х0:
1) f(x)=x2+x+1,x0=1;
2) f(x)=x-3x,x0=2;
3) f(x)=1/x,x0=3;
4) f(x)=1/x,x0=-2;
5) f(x)=sinx,x0=пи/4;
Объяснение:
В решении.
Объяснение:
Якою є множина розв'язків нерівності х²<х?
х² < x
x² - x < 0
Приравнять к нулю и решить квадратное уравнение:
x² - x = 0
х(х - 1) = 0
х₁ = 0;
х - 1 = 0
х₂ = 1;
Отметить вычисленные корни на числовой оси и определить знаки интервалов:
-∞ + 0 - 1 + +∞
Определить знак самого правого интервала, придать для этого любое значение х, больше 1 и подставить в неравенство:
х = 2;
4 - 2 > 0, значит, плюс.
Влево знаки меняются через корень.
Так как неравенство < 0, решением будет интервал со знаком минус.
Решение неравенства: х∈(0; 1).
Неравенство строгое, скобки круглые.
u2=-7d+10
-d2+4 =-7d+10
d2-7d+6 =0
По теореме Виета d_1 = 1 и d_2 = 6
Тогда u2=-d2+4
u=√(-d2+4 )
u_1=√(-1+4 ) = √3
u_2=√(-6+4 ) = √(-2) - не удовлетворяет условию
ответ: d = 1; u = √3