Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3
1) Куб суммы двух выражений равен кубу первого выражения(а³) плюс устроенное произведение квадрата первого выражения и второго выражения(3а²b) плюс устроенное произведение первого выражения и квадрата второго выражения(3ab²) плюс куб второго выражения(b³). В итоге a³ + 3a²b + 3ab² + b³. 2) Куб разности двух выражений равен кубу первого выражения(a³) минус устроенное произведение квадрата первого выражения и второго выражения(3a²b) плюс устроенное плюс устроенное произведение первого выражения и квадрата второго выражения(3ab²) минус куб второго выражения (b³). В итоге a³ - 3a²b + 3ab² - b³
одиннадцать целых двадцать девять сорок вторых