24 минуты = 24/60 часа = 4/10 часа = 0,4 часа. Пусть х - намеченная скорость. Тогда х-10 - сниженная скорость. 4х - расстояние между городами. 2х - длина части пути, пройденная с намеченной скоростью. 4х-2х - длина части пути, пройденная со сниженной скоростью. (4х-2х)/(х-10)- время, затраченное на часть пути со сниженной скоростью. Уравнение: 2 + (4х-2х)/(х-10) = 4 + 0,4 2 + 2х/(х-10) = 4,4 2х/(х-10) = 4,4-2 2х/(х-10) = 2,4 2х = 2,4(х-10) 2х = 2,4х - 24 2,4х-2х = 24 0,4х = 24 х = 24:0,4 х = 60 км/ч - первоначальная скорость автомобиля. ответ: 60 км/ч.
Проверка: 1) 60•4=240 км - расстояние между городами. 2) 2•60 = 120 км - длина пути, пройденная с намеченной скоростью. 3) 60-10=50 км/ ч - сниженная скорость. 4) 2+0,4 = 2,4 часа время езды со сниженной скоростью. 5) 50•2,4 = 120 км - длина пути, пройденная со сниженной скоростью. 6) 120+120=240 км - длина всего пути.
Пусть за t часов семья добирается до дачи по дороге без пробок, тогда за (t+3)часов семья добирается по дороге с пробками км/ч - скорость по дороге без пробок км/ч - скорость по дороге с пробками Известно, что скорость по дороге с пробками она на 75 км/ч меньше, чем по дороге без пробок. Составим уравнение
Приводим дроби к общему знаменателю 100(t+3)-100t=75t(t+3) 300=75t(t+3) t²+3t-4=0 t=-4 или t=1 За один час семья добирается до дачи, расположенной на расстоянии 100 км, поэтому скорость 100 км/ч по дороге без пробок 100-75=25 км/ч скорость по дороге с пробками
3/13х см длина
(42+3/13х)*2=х
84+6/13х=х
х-6/13х=84
7/13х=84
х=84:7/13
х=156 см периметр прямоугольника
156*3/13=36 см длина