Доказать, что — прямая пропорциональность. ---------- От нас требуется доказать, что — прямая пропорциональность, то есть доказать, что в выражении находится в первой степени (не , не , не и не , а просто ). Рассмотрим данное выражение . Если внимательно посмотреть это выражение можно видоизменить по формулам сокращенного умножения, а именно по формуле «разность квадратов». Действительно, данное выражение имеет вид , где , и . Формула «разность квадратов» раскрывается так: . Раскроем наше выражение по формуле:
Упростим: . Итак, получается, что , находится в первой степени, а значит зависимость — есть прямая пропорциональность. Доказано.
Сперва найдем производную функции, приравняем ее к 0 и найдем стационарные точки, затем проверим их на входимость в данный отрезок. Если входят, то находим значения функции в этих точках, заодно и на границах отрезка. Если не входят, то только на границах
Видно, что или y(-9), или y(-5) будут наименьшими значениями
Если к каждому из этих чисел прибавить (-5), а затем умножить на (e^9),то y(-9)=-5, а y(-5)=-e^4
учитывая, что-е^4=-2.7^4, то оно явно меньше, чем первое
2)20d-(d-3)+(3d-10)=20d-d+3+3d-10=22d-7