М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Misha01923
Misha01923
27.09.2021 18:39 •  Алгебра

Числа а, б, с, не целые. может быть так что каждое из чисел аб, бс, абс - целое?

👇
Ответ:
6561813
6561813
27.09.2021

Если имеется в виду, что a; b и с не обязательно меньше единицы, то возможно.

Например:

\displaystyle \tt a=1\frac{1}{2} \ \ \ \ \ b=2\frac{2}{3} \ \ \ \ \ \ c=\frac{3}{4}

Тогда:

\displaystyle \tt ab=1\frac{1}{2}\cdot2\frac{2}{3}=\frac{3}{2}\cdot\frac{8}{3}=4;\\\\\\bc=2\frac{2}{3}\cdot\frac{3}{4}=\frac{8}{3}\cdot\frac{3}{4}=2;\\\\\\abc=1\frac{1}{2}\cdot2\frac{2}{3}\cdot\frac{3}{4}=4\cdot\frac{3}{4}=3

Если же все три сомножителя меньше единицы, то получить в результате их произведения целое число не удастся.

4,8(99 оценок)
Открыть все ответы
Ответ:

1 а) - 5x^2+21

Б) 3a^2-16

в)2t^2+4t+2-4y

2)

a)x(x-3)*(x+3)

б)5(a+b)^2

3)13y^2+10y

4)

а)(2x-3)(2x+3)(4x^2+9)

б)(x+y)*(x-y-1)

5)x^2-4x+9=x^2-4x+4+5=(x-2)^2+5>=5

При любых x

1)

а) (х - 3) (х - 7) - 2х (3х - 5)

x^2-7x-3x+21-6x^2+10x

5x^2+0+21

-5x^2+21

б)4а (а - 2) - (а - 4)^2

4a^2-8a-(a^2-8a+16)

4a^2-8a-a^2+8a-16

3a^2-16

в) 2 (т + 1)^2 - 4m.

2(t^2+2t+1)-4m

2t^2+4t+2-4y

2.

а) х^3 - 9х

x(x^2-9)

x(x-3)*(x+3)

б) -5а^2 - 10аb - 5b^2

-5(a^2+2ab+b^2)

-5(a+b)^2

3)

(у^2 - 2у)^2 - у^2(у + 3) (у - 3) + 2у (2у^2 + 5).

y^4-4y^3+4y^2-y^2*(y^2-y)+4y^3+10y

y^4-4y^3+4y^2-y^4+9y^2+4y^3+10y

13y^2+10y

4)

а) 16х^4 - 81

(4x^2-9)(4x^2+9)

(2x-3)(2x+3)(4x^2+9)

б) х^2 - х - у^2 - у.

(x-y)*(x+y) - (x+y)

(x+y)*(x-y-1)

5)x^2-4x+9=x^2-4x+4+5=(x-2)^2+5>=5

При любых x

4,8(72 оценок)
Ответ:
ratmir2rat
ratmir2rat
27.09.2021

Практически очевидно, что если сумма квадратов двух положительных чисел меньше 100, то сумма самих этих чисел не может быть больше 64. Докажем это строго.

Первый

Пусть сумма квадратов двух положительных чисел х и у равна 100.

x^2+y^2=100

Составим выражение для суммы чисел х и у и найдем при каком условии оно принимает максимальное значение и чему равно это значение.

S=x+y

Выразим у из первого условия: y=\sqrt{100-x^2}

S=x+\sqrt{100-x^2}

Найдем производную:

S'=1+\dfrac{1}{2\sqrt{100-x^2}} \cdot(100-x^2)'=1-\dfrac{2x}{2\sqrt{100-x^2}} =1-\dfrac{x}{\sqrt{100-x^2}}

Найдем точки экстремума:

1-\dfrac{x}{\sqrt{100-x^2}} =0

\dfrac{x}{\sqrt{100-x^2}} =1

x=\sqrt{100-x^2}

x^2=100-x^2

2x^2=100

x^2=50

x=\pm\sqrt{50}

x=\pm5\sqrt{2}

Учитывая, что х - положительное:

x=5\sqrt{2} - точка максимума

y=\sqrt{100-(5\sqrt{2}) ^2}=\sqrt{100-25\cdot2}=\sqrt{50} =5\sqrt{2}

Максимум достигается при x=y=5\sqrt{2} и он равен:

S_{\max}=5\sqrt{2}+5\sqrt{2}=10\sqrt{2}

Итак, даже при условии, что сумма квадратов равна 100, сама сумма не может быть больше 10\sqrt{2}. По условию сумма квадратов меньше 100, значит сумма самих чисел меньше 10\sqrt{2} и точно не может быть больше 64. Значит, искомая вероятность равна 0.

Второй

Графически решить систему \begin{cases} x0,\,\,y0 \\ x^2+y^264 \end{cases} и найти отношение площади фигуры, соответствующей решению этой системы, к площади, являющейся решением системы \begin{cases} x0,\,\,y0 \\ x^2+y^2 (четверть окружности радиуса 10). Однако, первая система решений иметь не будет, значит вероятность равна 0.

ответ: 0

4,8(49 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ