Постройте график функции y=|x| а)найдите наибольшее и наименьшее значения этой функции на отрезке [0; 4] б)решите графически уравнение -|x|=x-2 решите .
Дробь не имеет смысл если знаменатель равен 0 он равен 0 когда хотя бы один множитель равен 0 т.е m*(m+2)²*n*(n-5) =0 при m=0 n=0 m+2=0 ⇒ m=-2 n-5=0 ⇒ n=5 ⇒ОДЗ m≠0; n≠0 ; m≠-2; n≠5 дробь равна 0 ,когда числитель равен 0 аналогично ищем корни (3m+18)(3n²-3)=0 если 3*(m+6)*3(n²-1)=0 9*(m+6)*(n²-1)=0 m+6=0⇒m=-6 n²-1=0 ⇒n=1; и n=-1 все полученные корни удовлетворяют ОДЗ
[ ] - это модуль? Обычно так обозначают целую часть числа. Ну ладно. При x < 1 [x - 1] = 1 - x x^2 + 3(1 - x) - 7 > 0 x^2 - 3x - + 3 - 7 > 0 x^2 - 3x - 4 > 0 (x - 4)(x + 1) > 0 x = (-oo; -1) U (4; +oo) Но по условию x < 1, поэтому x = (-oo; -1)
При x >= 1 [x - 1] = x - 1 x^2 + 3(x - 1) - 7 > 0 x^2 + 3x - 3 - 7 > 0 x^2 + 3x - 10 > 0 (x + 5)(x - 2) > 0 x = (-oo; -5) U (2; +oo) Но по условию x > 1, поэтому x = (2; +oo) ответ: (-oo; -1) U (2; +oo)
Вторая делается точно также При x < 6 [x - 6] = 6 - x Подставляем в квадратное неравенство При x >= 6 [x - 6] = x - 6 Тоже подставляем в квадратное неравенство