y` = 4x^3 +6x
y` = 3x^2-6x+1
y`= 6x+2
y`= 4x+ 1/ cos^2 x
y` = 5x^4-10x + cosx
y`= e^x + 1/x
y`= 1- 1/x
y`= -sinx +cos x
y`= 1/ (2*корень из х) - 1/ (х^2)
y`= 1/ (x ln 7) + 3
y`= 1/ (x ln 3) + 1/ (x ln 5)
y`= 5+2=7
y`= [(2x+5)(2-8x)+8(x^2+5x)] / (2-8x)^2 = (-8x^2+4x+10) / (2-8x)^2
y`= 6x
y`=9x^2-6
y`= cosx(1+cosx) - sinx(1+sinx)= cosx+cos^2 x-sinx-sin^2 x= cosx - sinx+ cos2x
y`= 1/( cos^2 x) - 2cosx
y`= 12x^2
y`= 12x^2-8
y`= 1/x * (x^2-1)+2x*lnx=(x^2-1) / x + 2x*lnx
y`= 4^x * ln4 * log4x + 4^x / (x*ln4)
1) (X+2)*(X+3)
2) (X-2)*(X-3)
3) (X-5)*(X-3)
4) (X-3)*(X-4)
5) (X-4)*(X+3)
6)(X-4)*(X+2)
7) (X-3)*(X+2)
8) (X+5)*(X-3)
Ну во-первых, раскладывается квадратный трехчлен по формуле:
a(x- первый корень)*(х- второй корень)
Корни мы находим либо решая этот трехчлен как квадратное уравнение, либо по теореме Виета (удобнее, запись становится короче).
Я решала в основном по теореме(исключение - трехчлен под номером 6). В общем, теорема Виета:
сумма корней равна числу b,но с противоположным знаком (т.е. число b в формуле ax²+bx+c)
А произведение корней (x1*x2) равно числу c(знак не меняем!)
Через дискриминант решаем как обычное квадратное уравнение, т.е. выписываем ниже трехчлен уже как уравнение (проще говоря, приписываем =0 к концу трехчлена)