Чтобы упростить выражение (3х + 2)(2х - 1) - (5х - 2)(х - 4) откроем скобки и приведем подобные слагаемые.
Чтобы умножить скобку на скобку умножаем каждое слагаемое из одной скобки на каждое слагаемое из второй.
(3х + 2)(2х - 1) - (5х - 2)(х - 4) = 3x * 2x - 3x * 1 + 2 * 2x - 2 * 1 - (5x * x - 5x * 4 - 2 * x - 2 * (- 4)) = 6x^2 - 3x + 4x - 2 - (5x^2 - 20x - 2x + 8);
Открываем скобки используя правило открытия скобок перед которыми стоит знак минус.
6x^2 - 3x + 4x - 2 - (5x^2 - 20x - 2x + 8) = 6x^2 - 3x + 4x - 2 - 5x^2 + 20x + 2x - 8 = 6x^2 - 5x^2 - 3x + 4x + 20x + 2x - 2 - 8 = x^2 + 23x - 10.
1.
а)
х²/(х²-у²) * (х-у)/х = х²/(х-у)(х+у) * (х-у)/х = х/(х+у),
б)
а/(3а+3в) : а²/(а²-в²) = а/(3*(а+в)) : а²/(а-в)(а+в) =
= а/(3*(а+в)) * (а-в)(а+в)/а² = (а-в)/3а,
в)
(-2с³/у)⁵ = -32с¹⁵/у⁵
г)
х/у² * 4ху = 4х²/у
2.
( у/(у-х) - (у-х)/у ) * (у-х)/х =
= ( у² - (у-х)²) / (у-х)у ) * (у-х)/х =
= ( у²-у²+2ху-х² ) / (у-х)у ) * (у-х)/х =
= х(2у-х) / (у-х)у ) * (у-х)/х = (2у-х) / у,
3.
(2х-4)/(х²+12х+36) : (8х-16)/(х²-36) =
= 2*(х-2)/(х+6)² : 8*(х-2)/(х-6)(х+6) =
= 2*(х-2)/(х+6)² : (х-6)(х+6)/8*(х-2) =
= (х-6) / 2*(х+6),
при х = 1,5:
(1,5-6) / 2*(1,5+6) = -4,5 / (2*7,5) = -4,5 / 15 = -3/10 (или -0,3)
4.
( а-8 + 32а/(а-8) ) * ( 8+а - 32а/(8+а) ) =
= [ ( (а-8)²+32а )/(а - 8) ] * [ ( (8+а)²-32а)/(8+а) ] =
= (а²-16а+64+32а)/(а-8) * (64+16а+а²-32а)/(8+а) =
= (а²+16а+64)/(а-8) * (а²-16а+64)/(8+а) =
= (а+8)²/(а-8) * (а-8)²/(8+а) =
= (а + 8)(а - 8) = а² - 64
рукописный вариант:
⇅⇅⇅⇅
{х=1
1^2+6•1•у+9у=16
1+6у+9у=16
15у=15
у=1
ответ: (1;1)