3.а)если х=2,то у=4•2+5=13
б)если х=6,то у=4•6+5=29
4.
а)-6=-5х+4 б)19=-5х+4
-6-4=-5х 19-4=-5х
-10=-5х 15=-5х
х=2 х=-3
5.у=2х+b
(-3(x);5(y))
5=2•(-3)+b
5=-6+b
5+6=b
b=11
ответ:4)11Часть 21.Смотрите прикрепленный файл
2.у=-2х+3
А(3(x);9(y))
-2•3+3≠9
-3≠9
ответ:точка А не принадлежит графику у=-2х+3B(4(x);-5(y))
-2•4+3=-5
-5=-5
ответ:точка B принадлежит графику у=-2х+33.А)нету фотографии графика
B)Смотрите прикрепленный файл
4.
у=5-2х и у=3х-5
5-2х=3х-5
-2х-3х=-5-5
-5х=-10
х=2
у=5-2•2=1
ответ:(2;1)Графическим см.прикрепленный файлЧтобы уравнение имело действительное решение , достаточно чтобы дискриминант был неотрицательным.
D/4 = (a^3-b^3)^2 -(a^2-b^2)*(a^4-b^4)>=0
То есть , необходимо доказать , что при любых a и b справедливо строгое неравенство :
(a^3-b^3)^2>=(a^2-b^2)*(a^4-b^4)
(a-b)^2*(a^2+ab+b^2)^2>=(a-b)^2* (a+b)^2 * (a^2+b^2)
Заметим , что когда a=b , получаем что 0=0 , то есть условие выполнено. И в этом случае уравнение имеет бесконечно много решений.
Теперь, поскольку мы разобрали этот случай и (a-b)^2>=0 , то для случая a≠b , можно поделить обе части неравентсва на (a-b)^2 не меняя знак неравенства :
(a^2+ab+b^2)^2>=(a+b)^2*(a^2+b^2)
( a^2+ab+b^2)^2 >= (a^2+2ab+b^2)*(a^2+b^2)
Теперь сделаем слудующий прием , поскольку (a^2+b^2)^2>0 при a≠b≠0
То можно поделить на это выражение обе части неравенства не меняя его знак :
( 1+ ab/(a^2+b^2) )^2>= 1+ 2ab/(a^2+b^2)
Тогда можно сделать замену:
ab/(a^2+b^2)=t
(1+t)^2>=1+2t
t^2+2t+1>=1+2t
t^2>=0 (верно)
Таким образом :
(a^3-b^3)^2>=(a^2-b^2)*(a^4-b^4) , то есть D>=0.
Вывод : уравнение имеет действительное решение при любых действительных а и b.
Что и требовалось доказать.
(уравниваем количество кислоты...)