Примем всю работу по покраске забора за единицу. Пусть производительность труда Ивана равна х, тогда производительность Андрея равна 4х. Их общая производительность равна (х+4х) и равна 5х. Чтобы найти время, за которое будет покрашен забор, нужно всю работу поделить на производительность. Таким образом, Андрей и Иван вместе покрасят забор за (1/(5х)) часов, что по условию равно 2 ч. Составляем уравнение: 1/10 - производительность труда Ивана. 1 : (1/10) = 1 * 10 = 10 ч - за столько часов может покрасить забор Иван.
Для того, чтобы система не имела решений, графики её уравнений должны быть параллельны. Это значит, что коэффициенты при х и при у должны быть соответственно равны, а свободные члены не должны быть равны. Имеем:1) х+ау=1; коэф. при х равен 1, коэф. при у равен а, свободн. равен 12) х-3ау=2а+3; коэф.при х равен 1, коэф. при у равен -3а, своб. равен 2а+3Коэффициенты при х: 1=1Коэффициенты при у: а=-3а, а+3а=0, 4а=0, а=0Свободные члены: 1, 2*0+3=3 - не равны между собой.Все условия выполнены.
3/7а-(4/7a-2b)=3/7a-4/7a+2b= -1/7a+2b