1) Строить график не буду, объяню как решать.
y = -x^2+4x - квадратичная функция
График - парабола, ветви вниз, т.к. перед x^2 отрицательный коэффициент.
Вершина параболы
x(0) = -b/2a = -4/2*(-1) = -4/-2 = 2
y(0) = 4
Таблица значений
x|0|1|2|3|4
y|0|3|4|3|0
Строишь по клеткам параболу.
а)
Значение функции = значение на оси Оу
На оси х находишь точки 0 и 3 проводишь пунктирную линию к графику.
Получается
у наиб = 3
y наим = 0
б) y возрастает на примежутке ( минус бесконечность; 2]
убывает на промежутке [2; +бесконечность);
в)4x^2 - x^2 < 0
4x^2 - x^2 = 0
3x^2 = 0
x^2 = 0
x = 0
x (0; + бесконечность)
1. нет; 2. 1) общего вида 2) общего вида 3) общего вида 3. 1) -1; 3 2) 1; -3 4) -1
Объяснение:
1. Если функция нечетная то произведение f(3)f(-3) не будет положительным.
2.
1)
Это функция общего вида
2)
Это функция общего вида
3)
Это функция общего вида
3.
1)
Значит
2)
Значит
4.
Это биквадратное уравнение. Делаем подстановку
Уравнение будет иметь один корень, когда дискриминант равен 0
Но, поскольку х=±√у, то при любом положительном у мы получим два различных значения х. Одно значение х мы получим лишь в случае у=0. Тогда х=√0=0. Следовательно
Делаем проверку:
1) а=-1
Имеется одно решение (т.к выражение в скобках никогда не будет равно 0)
2) а=3
Здесь появляется второй корень. Значит, это значение не подходит.
Окончательно получаем решение: а=-1
.....