-7х-3у=-63
-7х+3у=-63
-14х = -126 разделим обе части на (-14)
х = 9, подставим это значение в любое из уравнений, например во второе -7 * 9 + 3у = -63
-63 + 3у = -63
3у = 0
у = 0
ответ: (9; 0)
В решении.
Объяснение:
Если ширину прямоугольника уменьшить на 2 см , а длину на 3 см , то получится квадрат , площадь которого на 51 см² меньше площади первоначального прямоугольника. Найдите стороны прямоугольника.
х - ширина первоначального прямоугольника.
у - длина первоначального прямоугольника.
(х - 2) = (у - 3) - длина стороны нового квадрата.
ху - площадь первоначального прямоугольника.
(х - 2)*(у - 3) - площадь нового квадрата.
По условию задачи система уравнений:
(х - 2) = (у - 3)
ху - (х - 2)*(у - 3) = 51
Раскрыть скобки:
х - 2 = у - 3
ху - ху + 3х + 2у - 6 = 51
Привести подобные члены:
х = у - 1
3х + 2у - 6 = 51
Подставить значение х во второе уравнение и вычислить у:
3(у - 1) + 2у - 6 = 51
3у - 3 + 2у - 6 = 51
5у = 51 + 9
5у = 60
у = 60/5
у = 12 (см) - длина первоначального прямоугольника.
х = у - 1
х = 12 - 1
х = 11 (см) - ширина первоначального прямоугольника.
Проверка:
11 * 12 = 132 (см²) - площадь первоначального прямоугольника.
(11 - 2)*(12 - 3) = 9 * 9 = 81 (см²) - площадь нового квадрата.
132 - 81 = 51 (см²), верно.
f`(π)=tgπ+(π/cos²π)=0+π/(-1)²=π
2) f`(x)=((x)`·(x+1)-x·(x+1)`)/(x+1)²=(x+1-x)/(x+1)²=1/(x+1)²
f`(2)=1/(2+1)²=1/9
3)f`(x)=((x-1)`·x-(x-1)·(x)`)/(x)²=(x-x+1)/(x)²=1/(x)²
f`(-2)=1/(-2)²=1/4