М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
spartanash
spartanash
21.04.2023 19:26 •  Алгебра

Докажите что при любом натуральном ^n значение выражения : 15^n+13 кратно 7 9^n + 5^n-2 кратно 4 5*25^n+ 13*13^2n кратно 9 21^n + 4^n+2 кратно 17

👇
Ответ:
Xaler
Xaler
21.04.2023
Будем доказывать методом мат. индукции.

1) F(n) = 15^n + 13,
при n=1 получаем
15+13 = 28 кратно 7.
предположим, что выражение кратно 7 при любом натуральном k≤n, то есть, что
F(k) = 15^k + 13 = 7*A, где А - целое, k<=n,
тогда покажем, что это выражение F(k+1) также кратно 7.
F(k+1) = 15^(k+1) + 13 = 15*15^k + 13 = (14+1)*15^k + 13 = 14*(15^k) + 
+ 15^k + 13 = 14*(15^k) + 7*A = 7*(2*15^k  + A). 
По методу мат. индукции мы доказали, что F(n) кратно 7 при любом натуральном n.

2) F(n) = 9^n + 5^n -2,
F(1) = 9 + 5 - 2 = 14 - 2 = 12 = 4*3, кратно 4.
Предположим, что для любого натурального k<=n F(k) кратно 4, то есть
F(k) = 9^k +5^k - 2 = 4*B,
Покажем тогда, что F(k+1) кратно 4:
F(k+1) = 9^(k+1) + 5^(k+1) - 2 = 9*(9^k) + 5*(5^k) - 2 = (8+1)*(9^k) +
+ (4+1)*(5^k) - 2 = 8*(9^k) + 9^k + 4*(5^k) + 5^k -2 = 
= 8*(9^k) + 4*(5^k) + ( 9^k + 5^k - 2) = 8*(9^k) + 4*(5^k) + 4*B = 
 = 4*( 2*(9^k) + 5^k + B), последнее выражение в скобках очевидно целое, поэтому результат кратен 4.

3) F(n) = 5*(25^n) + 13*(13^(2n))
F(1) = 5*25 + 13*(13^2) = 125 + 13*169 = 125 + 2197 = 2322 = 9*258.
Предположим, что для любого k<=n F(k) кратно 9, то есть
F(k) = 5*(25^k) + 13*(13^(2k)) = 9*C,
тогда покажем, что F(k+1) кратно 9:
F(k+1) = 5*(25^(k+1)) + 13*( 13^(2*(k+1)) ) = 5*25*(25^k) + 13*(13^(2k+2)) = 
= 5*25*(25^k) + 13*(13^2)*(13^(2k)) = 5*(27-2)*(25^k) + 13*(169)*(13^(2k)) = 
= 5*27*(25^k) - 2*5*(25^k) + 13*(171-2)*(13^(2k)) = 
= 5*27*(25^k) - 2*5*(25^k) + 13*171*(13^(2k)) - 2*13*(13^(2k)) = 
= ( 5*27*(25^k) + 13*171*(13^(2k)) ) - 2*( 5*(25^k) + 13*(13^(2k)) ) = 
= 9*( 5*3*(25^k) + 13*19*(13^(2k)) ) - 2*(9*C) = 
= 9*( 5*3*(25^k) + 13*19*(13^(2k)) - 2*C ) и
F(k+1) кратно 9.

4) F(n) = 21^n + 4^(n+2)
F(1) = 21+ 4^3 = 21+64 = 85 = 17*5.
Предположим, что F(k) кратно 17 при любом натуральном k<=n, то есть
F(k) = 21^k  + 4^(k+2) = 17*Q, где Q -целое,
Покажем тогда, что F(k+1) тоже кратно 17:
F(k+1) = 21^(k+1) + 4^( (k+1)+2 ) = 21*(21^k) + 4^(k+2+1) = 
= (17+4)*(21^k) + 4*(4^(k+2)) = 17*(21^k) + 4*(21^k) + 4*(4^(k+2)) = 
= 17*(21^k) + 4*( 21^k  + 4^(k+2)) = 17*(21^k) + 4*17*Q = 
= 17*( (21^k) + 4*Q ),
если k и Q - целые, то выражение в последних скобках тоже целое, и F(k+1) кратно 17.
4,5(75 оценок)
Открыть все ответы
Ответ:
idkfndnf
idkfndnf
21.04.2023
Решить уравнения
1)  3x² = 0   ⇒ х = 0
2) 9x² = 81  ⇒ х² = 9 ⇒ х₁= -3 и х₂ = 3
3) x² - 27 = 0     ⇒ х² = 27 ⇒ х = ⁺₋ √27 ⇒ х = ⁺₋ 3√3
4) 0.01x² = 4    ⇒ х² = 400 ⇒ х₁= -20 и х₂ = 20

2. Решить уравнения
1) x² + 5x = 0
    х(х + 5) = 0
х₁ = 0   или  х₂ = -5  

2) 4x² = 0.16x
    4x² - 0.16x = 0 
4х (х - 0,04) = 0
х₁ = 0   или  х₂ = 0,04 

 3) 9x² + 1 = 0
     9x² = - 1 - НЕТ решения (корень из отрицательного числа НЕ существует)
 
3. Решить уравнения
 1) 4x² - 169 = 0  
 4x² = 169
х² = \frac{169}{4}
х₁ =  -6,5  или  х₂ = 6,5 

2) 25 - 16x² = 0
 16х² = 25
х₁ =  -1,25  или  х₂ = 1,25 
 
 3) 2x² - 16 = 0
2х² = 16
х² = 8
х₁ =  -2√2  или  х₂ = 2√2
 
 4) 3x² = 15
      х² = 5
х₁ =  -√5  или  х₂ = √5
  
5) 2x² =  
   х² = \frac{1}{16}
х₁ =  -0,25  или  х₂ = 0,25
  
6) 3x² =   
  3х² = \frac{16}{3}
х² = \frac{16}{9}
х₁ =  -1\frac{1}{3}  или  х₂ = 1\frac{1}{3} 
4,5(45 оценок)
Ответ:
daria151174
daria151174
21.04.2023

1) Установить соответствие:

Угол ABC опирается на дугу ADC

Угол DEF опирается на дугу DCF

Угол AGF опирается на дугу ACF

2) Условно примем, что хорда АВ разделилась на отрезки АМ=25 см и ВМ=36 см. Тогда отношение частей хорды CD будет равно СМ/MD=1/4. Отрезки двух хорд связаны: произведение отрезков одной хорды равно произведению отрезков другой хорды.

Примем за х одну часть. Тогда СМ будет равен х, а MD - 4х. Составляем уравнение:

25*36=х*4х

900=4х^2

х^2=900/4

х^2=225

х=15

Находим 4х:

4*15=60 см.

Длина второй хорды равна 15+60=75 см. Следовательно, верный ответ 4 - 75 см.

3) Верный высказывания: 2 и 3. 

Второе высказывание верно, потому что при делении числа на два не может быть двух разных результатов.

Третье высказывание верно, потому что градусная мера полуокружности равна 180 градусам, а вписанный угол равен половине градусной меры дуги, на которую опирается. Следовательно, вписанный угол, опирающийся на полуокружность, будет равен 180/2=90 градусов.

4) Определение вписанного угла: угол, стороны которого пересекают окружность, а вершина лежит на окружности, является вписанным. Следовательно, нужными пунктами будут 1 и 5.

5) Вписанными углами будут являться углы под номерами 1, 2 и 5.

6) Угол ABC - вписанный, значит градусная мера дуги, на которую он опирается, будет равна удвоенной градусной мере угла: 44*2=88 градусов.

Также указано, что дуга AB равна 92 градуса. Учитывая то, что вся окружность равняется 360 градусам, составляем уравнение:

Дуга BC=360-(88+92)

Дуга BC=360-180

Дуга ВС=180 градусов.

7) Из рисунка видно, что BC - это диаметр, следовательно, дуга BAC будет равна 180 градусов. Известно, что часть дуги ВАС - дуга ВА равна 100 градусам, значит вторая часть - дуга АС будет равна 180-100=80 градусов. 

Угол ABC - вписанный, значит его градусная мера равна половине градусной меры дуги, на которую он опирается: 80/2=40 градусов.

8) Дуги АВ и ВС соприкасаются в точке В, значит дуга АВ+дуга ВС=дуга АВС; 152+80=232 градусов.

Дуга АС равна 360- 232= 128 градусов.

Угол AВС - вписанный, значит его градусная мера равна 128/2=64 градуса.

4,4(44 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ