Для определения значения тригонометрической функции, найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2 ) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.
Объяснение:
Arcsin(ctg(π/4))=arcsin(1)=π/ 2 cos(arcsin(-1/2)-arcsin(1))=cos(2π/3-π/2)= cos(4π/6-3π/6)=cos(π/6)=√3/2.
Поскольку основания целые, а степени положительные, можно возвести сравниваемые числа в одну и ту же степень, а затем сравнивать. Большее полученное число будет означать, что и первоначальное значение корня было больше.
Возведем в степень, кратную степеням корней; т.е. в 15-ю степень, (3*5=15). При возведении степени в степень показатели перемножаются, т.е.
(1/3)*15 = 15/3 = 5 ; (1/5)*15 = 15/5 = 3
32 > 27 > 1
Т.е: