Объяснение:
Поскольку мы должны делить сумму цифр на их произведение, то произведение не должно равняться нулю.
А это значит, что цифра числа не должна равняться нулю.
Так же одновременно с цифрой 5 в записи числа не должно быть четной цифры.
Далее:
Самое маленькое восьмизначное число:
1 1 1 1 1 1 1 1.
По условию в крайней мере две цифры должны быть различны, например:
1 1 1 1 1 1 1 2.
Пусть число оканчивается цифрой X
Находим сумму и произведение цифр:
1+1+1+1+1+1+1+X = 7+X.
1*1*1*1*1*1*1*X = X
Сумма цифр должна делиться на произведение цифр:
(7+X) / (X) - целое число
Пусть X= 7
тогда:
(7+7)/7 = 2
Итак, мы нашли самое маленькое число, удовлетворяющее условиям:
1 1 1 1 1 1 1 7
Рассуждая подобным образом, можно найти другие числа.
Вот, например, начало этого ряда:
360/v2-360/v1=0.5
v1-v2=10 v2=v1-10
360(v1-v2)=0.5v1*v2
360*10*2=v1*v2 7200=v1*v2=v1(v1-10)
v1²-10v1-7200=0 √D=√100+4*7200=170
v1=0.5[10+170]=90км/ч v2=v1-10=80км/ч