Правило нахождения наименьшего общего знаменателя для двух или нескольких дробей:1) Выбираем из всех знаменателей наибольшее число и проверяем, делится ли оно на остальные. Если делится, то это число и есть наименьший общий знаменатель (НОЗ) этих дробей.2) Если наибольший знаменатель не делится на все остальные, умножаем его на 2 и проверяем, делится ли полученное число на все остальные. Если делится, то это новое число и есть НОЗ.3) Если после умножения на два новое число не делится на все остальные, наибольший из знаменателей умножаем на 3,4,5 и так далее до тех пор, пока новое число не будет делиться на все остальные. Это новое число и есть наименьший общий знаменатель
Общий член ряда чисел, которые при делении на 5 в остатке 3 р = n*5+3, где n - натуральное число. найдем n, пр котором крайнее число ряда будет еще двузначным 5*n+3< 100 5*n< 97 n< 20 найдем формулу для суммы полученной последовательности чисел при n =1 s = 5*1+3 при n =2 s = 5*1+3 + 5*2+3 при n =3 s = 5*1+3 + 5*2+3 + 5*3+3 = 5*(1+2+3) + 3*3 в скобках получается сумма арифметической прогрессии. в общем случае формула примет вид s = 5*+n)/2)*n) + 3*n для n = 19, при котором числа являются двузначными s = 5*((20/2)*19) + 3*19 = 1007
4x²-x²-10x+10x-24-25=0
3x²-49=0
x²=49/3
x=√49/3
x1=7/√3
x2=-7/√3
b)3x²+6x=8-4x
3x²+6x+4x-8=0
3x²+10x-8=0
D=100+96=196
x1=-10+14/2=4/2=2
x2=-10-14/2=-24/2=-12