5,5, √30, 3√3
Объяснение:
1. Судя по всему что больше?
а)Взведем в квадрат 32.49>31 значит 5,7 >√31
б) тут 4,2 >0, -√17 <0 значит 4.2>-√17
но -√17 может быть и положительным, тогда так же возведем в квадрат 17,64 > 17 тот же рез-т
2: два слагаемых. одно рациональное, второе иррациональное - т. к. корень из 3 и из 7 десятичная непериодическая бесконечная дробь (не может быть представлено в виде обыкновенной дроби)
Сумма рационального и иррационального - иррациональное.
Доказывается так: сумма (разность) двух рациональных - рациональное, если в данном случае сумма (разность) будет рациональным, то оба числа в условии рациональные, а это не так, см. выше.
3. смотрим ближайшие целые квадраты: 16 и 25, т. е. между 4 и 5
4. Возведем все в квадрат и избавимся от иррациональности: 30, 27 30,25
Значит 5,5, √30, 3√3
Общий вид решения уравнения sin x = a, где | a | ≤ 1, определяется формулой:
x = (- 1)^k · arcsin(a) + πk, k ∈ Z (целые числа),
x = +-arc sin (1/4) + πk ≈ +- 0,25268 + πk, k ∈ Z.Общий вид решения уравнения tg x = a определяется формулой:
x = arctg(a) + πk, k ∈ Z (целые числа).
х = 1,107149 + πk, k ∈ Z.
3a^a-5×3b-12bbb= 3а³-5 * 3b -12b3=3(a3-5b-4b³)
* - это умножить