y=kx+1 и y=kx^2−(k−3)x+k приравниваем, решаем и требуем чтобы было 2 корня D>0
kx+1=kx^2−(k−3)x+k
kx^2-(k-3)x+k-kx-1=0
kx^2-(2k-3)x+k-1=0
D=(2k-3)^2-4k(k-1)=4k^2-12k+9-4k^2+4k=-8k+9>0
8k<9
k<9/8
теперь y=kx+1 и y=(2k−1)x^2−2kx+k+9/4 приравниваем и требуем чтобы не было корней D<0
kx+1=(2k−1)x^2−2kx+k+9/4
(2k−1)x^2−2kx+k+9/4-kx-1=0
(2k−1)x^2−3kx+k+5/4=0
D=(3k)^2-4(2k-1)(k+5/4)=9k^2-(2k-1)(4k+5)=9k^2-8k^2+4k-10k+5=k^2-6k+5=(k-1)(k-5)<0
1<k<5
пересекаем k<9/8 и 1<k<5 - ответ 1<k<9/8
ответ 1<k<9/8
Решение методом разложения:
Разложим числа на простые множители и подчеркнем общие множители чисел:
58110697294650 = 2 · 3 · 3 · 3 · 5 · 5 · 7 · 7 · 7 · 11 · 11 · 13 · 13 · 17 · 19 · 19
3191270940 = 2 · 2 · 3 · 3 · 3 · 5 · 11 · 11 · 13 · 13 · 17 · 17
Общие множители чисел: 2; 3; 3; 3; 5; 11; 11; 13; 13; 17
Чтобы найти НОД чисел, необходимо перемножить их общие множители:
НОД обоих чисел = 2 · 3 · 3 · 3 · 5 · 11 · 11 · 13 · 13 · 17 = 93860910
Решение методом Евклида:
1) 58110697294650 : 3191270940 = 18209 (ост. 844748190)
2) 3191270940 : 844748190 = 3 (ост. 657026370)
3) 844748190 : 657026370 = 1 (ост. 187721820)
4) 657026370 : 187721820 = 3 (ост. 93860910)
5) 187721820 : 93860910 = 2 без остатка.
Значит, 93860910 является НОД.
Примечание:
Проверку прикрепил фотографией.
ответ: НОД = 93860910.
Д=В^2-4ас= 1-4*4*(-10)=1+160=161