1. x2 - 9x + 20 = 0
По теореме Виетта
x1 + x2 = 9
x1 × x2 = 20
(То есть нам нужно найти 2 таких числа, при сложении которых получилось бы 9, а при умножении 20)
х1 = 4
х2 = 5
2. х2 - 6х + 8
а) (a - b)2
x2 - 2x × 3 + 8
x2 - 2x × 3 + 9 - 9 + 8
x2 - 2x × 3 + 9 - 9 + 8 = (x - 3)2 - 1
б) представим выражение в виде
х2 - 2х - 4х + 8 (для того, чтобы мы могли потом использовать группировки). теперь вынесем общий множитель у пар
х(х - 2) - 4(х - 2)
теперь снова вынесем общий множитель (в данном случае это целая скобка)
(х - 2)(х - 4)
Общее расстояние от пункта А до пункта В равно 60*2= 120 км. Время, в которое он ехал со скоростью 60 км/ч неизвестно, значит обозначим его X.
Так как водитель сделал вынужденную остановку на 10 минут, то время всего пути составит 2 часа минус 10 минут, т. е. 11/6 часа. Чтобы узнать время, в которое он ехал со скоростью 80 км/ч, необходимо вычесть из 11/6 число Х. Зная скорости движения и время пути до и после остановки, можем составить уравнение.
60х+80(11/6-х) =120
Решая это уравнение, получим 4/3. Это время, которое он потратил до остановки. Умножаем 60 на 4/3, получаем расстояние 80 км. Это и будет ответом на данную задачу
29.
б) в числителе выносим за скобку 5, получаем :
5(3b + 4c) / 10b
Сокращаем 5 и 10 на 5, получаем :
3b + 4c / 2b
г) В знаменателе выносим за скобку 6, получаем :
5x (y+2) / 6 (y + 2)
Сокращаем скобки (y+2) , получаем:
5x / 6
д) В знаменателе выносим за скобку a , получаем:
a - 3b / a(a-3b)
Сокращаем a-3b , получаем :
1 / a
30.
б) В числителе выносим 5 за скобку, а в знаменателе раскрываем формулу разности квадратов , получаем:
5(x - 3y) / (x-3y)(x+3y)
Сокращаем скобки (x-3y), получаем:
5 / x + 3y
г) В числителе выносим за скобку 6c , знаменатель не меняем, получаем:
6c(d-3) / (d-3)^2
Сокращаем скобки (d-3), получаем:
6c / d - 3
Формула разности квадратов :
x^2 - y^2 = (x-y) * (x+y)