М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Водород56
Водород56
24.04.2020 14:53 •  Алгебра

2/3y-y/6=0 3p/4-p=5 5x/2-3x/5=1.9 тому кто ответит правильно 15

👇
Ответ:
RzhevskayaL
RzhevskayaL
24.04.2020
5x^2-2x+3p=0|:5
x^2-0,4x+0,6p=0 x1=1x1*x2=0,6px1+x2=0,4, 1+x2=0,4, x2=-0,6
4,4(3 оценок)
Открыть все ответы
Ответ:
Vikysiax99
Vikysiax99
24.04.2020

Объяснение:

1)

arccos (2x-3)=\frac{\pi }{3}arccos(2x−3)=

3

π

Так как cos(arccosx) = x, |x| \leq 1cos(arccosx)=x,∣x∣≤1 , то

\begin{gathered}2x-3 = cos\frac{\pi }{3} ;\\2x-3 = \frac{1}{2} ;\\2x=0,5+3;\\2x=3,5;\\x=3,5:2;\\x=1,75.\end{gathered}

2x−3=cos

3

π

;

2x−3=

2

1

;

2x=0,5+3;

2x=3,5;

x=3,5:2;

x=1,75.

ответ: 1,75.

2)

\begin{gathered}arccos (x+\frac{1}{3} ) =\frac{2\pi }{3} ;x+\frac{1}{3} = cos \frac{2\pi }{3} ;x+\frac{1}{3} = -\frac{1}{2} ;x=-\frac{1}{2}-\frac{1}{3};x= -\frac{5}{6} .\end{gathered}

arccos(x+

3

1

)=

3

;

x+

3

1

=cos

3

;

x+

3

1

=−

2

1

;

x=−

2

1

3

1

;

x=−

6

5

.

ответ: -\frac{5}{6} .−

6

5

.

4,8(29 оценок)
Ответ:
Запишем данное уравнение в виде P(x,y)*dx+Q(x,y)*dy=0, где P(x,y)=ln(y)-5*y²*sin(5*x), Q(x,y)=x/y+2*y*cos(5*x). Для того, чтобы данное уравнение было уравнением в полных дифференциалах, необходимо и достаточно выполнения условия dP/dy=dQ/dx. В нашем случае dP/dy=1/y-10*y*sin(5*x), dQ/dx=1/y-10*y*sin(5*x), т.е. dP/dy=dQ/dx, поэтому данное уравнения есть уравнение в полных дифференциалах. Но тогда справедлива система уравнений:

P(x,y)=ln(y)-5*y²*sin(5*x)=du/dx
Q(x,y)=x/y+2*y*cos(5*x)=du/dy,

где du/dx и du/dy - частные производные от искомой функции u(x,y).

Интегрируя первое уравнение системы по x, находим u(x,y)=ln(y)*∫dx-5*y²*∫sin(5*x)*dx=x*ln(y)-y²*cos(5*x)+f(y), где f(y) - неизвестная пока функция от y. Дифференцируя теперь это равенство по y, находим du/dy=x/y-2*y*cos(5*x)+f'(y). А так как du/dy=Q(x,y)=x/y-2*y*cos(5*x), то отсюда f'(y)=0 и соответственно f(y)=C1, где С1 - произвольная постоянная. Значит, u(x,y)=x*ln(y)-y²*cos(5*x)+C1. Но так по условию du=0, то u=const=C2, где C2 - также произвольная постоянная. Отсюда получаем равенство x*ln(y)-y²*cos(5*x)=C, где C=C2-C1. Это и есть решение данного уравнения. ответ: x*ln(y)-y²*cos(5*x)=C.

 
4,4(82 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ