В решении.
Объяснение:
Двое рабочих работая совместно могут выполнить работу за 12 дней. За сколько времени выполнит эту работу второй работник, если он за 3 дня выполняет такую часть работы,как первый за 4 дня.
Вся работа - 1;
х - производительность 1 работника (часть работы в день).
у - производительность 2 работника (часть работы в день).
По условию задачи система уравнений:
(х+у) * 12 = 1
4*х=3*у
1) Найти производительность труда 2 работника.
Выразить х через у во втором уравнении, подставить выражение в первое уравнение и вычислить у:
х= 3у/4
(3у/4 + у) * 12=1
9у + 12у = 1
21у = 1
у = 1/21 - производительность труда 2 работника (такую часть работы он делает за 1 день).
2) Найти количество дней, за которое 2 работник один сделает всю данную работу.
1 : 1/21 = 21 (день) потребуется второму работнику, если он будет работать один.
4х-х^2>=0
Решим данное неравенство методом интервалов: рассмотрим функцию
g=4x-x^2 или g=x(4-x)
Функция g обращается в ноль в точках х=0 и х=4, которые числовую прямую разбивают на три промежутка:
(-бесконечность, 0], [0,4] и [4,+бесконечность).
Определим знак функции g на каждом промежутке:
(-бесконечность, 0]: g(-1)=-1*5<0
[0,4]: g(1)=1*3>0
[4,+бесконечности) : g(5)=5*(-1)<0.
Таким образом,
D(y) =[0,4].