Целое решение неравенства - это целое число, входящее в область решений неравенства. Пример 1: x-3<5 x<5+3 x<8 Решением этого неравенства является интервал (-∞;8) В этот интервал входят, например, целые числа -6; 0; 1; 5; 7 и т.д. Эти числа и будут называться целыми решениями неравенства. Пример 2: 4< x < 8 Решением является открытый интервал (4;8). В этот интервал входят целые числа 5; 6 и 7. Они и будут являться целыми решениями неравенства. Пример 3: 4≤ х ≤ 8 Решением неравенства является закрытый интервал [4:8]. В этот интервал входят целые числа 4; 5; 6; 7 и 8. Они и будут являться целыми решениями неравенства.
Уравнение квадратной параболы в общем виде: у = ах² + вх + с Найдём коэффициенты а, в, с Подставим координаты точки А -6 = а· 0² + в·0 + с → с = -6 Подставим координаты точки В -9 = а·1² + в·1 - 6 → а + в = -3 (1) Подставим координаты точки С 6 = а·6² + в·6 - 6 → 6а + в = 2 → в = 2 - 6а (2) Подставим (2) а (1) а + 2 - 6а = -3 → а = 1 Из (2) получим в = -4 Итак, мы получили уравнение параболы: у = х² - 4х - 6 Абсцисса вершины параболы: m =-в/2а = 4 / 2 = 2 Ординату вершины параболы найдём, подставив в уравнение параболы х = m = 2 у = 2² - 4 · 2 - 6 = -10 ответ: вершиной параболы является точка с координатами (2; -10)
Самое главное ты уже сделала - это выучила формулы Давай разберем куб суммы (a+b)³=a³+3a²b+3ab²+b³ Здесь везде плюсы, и запоминать знаки не надо (3+2)³=3³+3×3²×2+3×3×2²+2³ при вычеслении будем изначально возводить в квадрат, а затем уже умножать и складывать итак мы получаем 27+3×(9×2)+3×(3×4)+8 27+54+46+8 135 самое главное запомнить 1. Сначала возводишь числа в степень 2. Потом производишь умножение 3. В конце складываешь или вычитаешь В разности кубов будет тоже самое только знаки другие (ну это ты сама знаешь) главное степени знать какие
Пример 1:
x-3<5
x<5+3
x<8
Решением этого неравенства является интервал (-∞;8)
В этот интервал входят, например, целые числа -6; 0; 1; 5; 7 и т.д.
Эти числа и будут называться целыми решениями неравенства.
Пример 2:
4< x < 8
Решением является открытый интервал (4;8).
В этот интервал входят целые числа 5; 6 и 7. Они и будут являться целыми решениями неравенства.
Пример 3:
4≤ х ≤ 8
Решением неравенства является закрытый интервал [4:8].
В этот интервал входят целые числа 4; 5; 6; 7 и 8. Они и будут являться целыми решениями неравенства.